Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74521
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為(CheeWee Liu)
dc.contributor.authorPin-Shiang Chenen
dc.contributor.author陳品翔zh_TW
dc.date.accessioned2021-06-17T08:40:29Z-
dc.date.available2024-08-16
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-07
dc.identifier.citationChpater 1
[1] Gordon E. Moore “Cramming more components onto integrated circuits,” IEEE Solid-State Circuits Society Newsletter, Vol.11, Iss, 3, 2006.
[2] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C. Weber, P. Yashar, K. Zawadzki, K. Mistry, “A 22nm high performance and lowpower CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors,” in Proc. Symposium on VLSI Technology, June 2012, pp. 131-132.
[3] Christianto C. Liu, Shuo-Mao Chen, Feng-Wei Kuo, Huan-Neng Chen, En-Hsiang Yeh, Cheng-Chieh Hsieh, Li-Hsien Huang, Ming-Yen Chiu, John Yeh, Tsung-Shu Lin, Tzu-Jin Yeh, Shang-Yun Hou, Jui-Pin Hung, Jing-Cheng Lin, Chewn-Pu Jou, Chuei-Tang Wang, Shin-Puu Jeng, Douglas C.H. Yu, “High-performance integrated fan-out wafer level packaging (InFO-WLP): Technology and system integration,” in IEEE IEDM Tech. Dig., Dec. 2012, pp. 14.1.1-14.1.4.
[4] Mark T. Bohr, Ian A. Young, “CMOS Scaling Trends and Beyond,” IEEE Micro, Vol. 37, Iss. 6, 2017.
[5] C.W. Liu, M. Östling, and J.B. Hannon, “New materials for post-Si computing,” MRS Bulletin 39.08 (2014): 658-662. 000.
[6] Hussam Amrouch, Girish Pahwa, Amol D. Gaidhane, Jörg Henkel, and Yogesh Singh Chauhan, “Negative Capacitance Transistor to Address the Fundamental Limitations in Technology Scaling: Processor Performance,” IEEE Access, Vol. 6, pp. 52754-52765, 2018.
Chpater 2
[1] Abigail Lubow, Sohrab Ismail-Beigi, and T. P. Ma, “Comparison of drive currents in metal-oxide-semiconductor field-effect transistors made of Si, Ge, GaAs, InGaAs, and InAs channels,” Applied Physics Letters, 96, 122105 (2010).
[2] S-Q. Xiao and P. Pirouz, “On diamond-hexagonal germanium,” Journal of Materials Research, Vol. 7, No. 6, pp. 1406–12, 1992.
[3] Y Zhang, Z Iqbal, S Vijayalakshmi, S Qadri, and H Grebel, “Formation of hexagonal-wurtzite germanium by pulsed laser ablation,” Solid State Communications, Vol. 115, Iss. 12, pp. 657-660, 2000.
[4] Bianca Haberl, Malcolm Guthrie, Brad D. Malone, Jesse S. Smith, Stanislav V. Sinogeikin, Marvin L. Cohen, James S. Williams, Guoyin Shen, and Jodie E. Bradby, “Controlled formation of metastable germanium polymorphs,” Physical Review B, 89, 144111 (2014).
[5] C. Raffy, J. Furthmüller, and F. Bechstedt, “Properties of hexagonal polytypes of group-IV elements from first-principles calculations,” Physical Review B, 66, 075201 (2002).
[6] S Q Wang and H Q Ye, “First-principles study on the lonsdaleite phases of C, Si and Ge,” Journal of Physics: Condensed Matter, 15 L197 (2003).
[7] J. D. Joannopoulos and Marvin L. Cohen, “Electronic Properties of Complex Crystalline and Amorphous Phases of Ge and Si. I. Density of States and Band Structures,” Physical Review B, 7, 2644 (1973).
[8] Amrit De, and Craig E Pryor, “Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase,” Journal of Physics: Condensed Matter, 26, 045801 (2014).
[9] A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Reviews of Modern Physics, 26, 045801 (2014).
[10] S. Deshmukh, B. Haberl, S. Ruffell, P. Munroe, J. S. Williams, and J. E. Bradby, “Phase transformation pathways in amorphous germanium under indentation pressure,” J. Appl. Phys., 115, 153502 (2014).
[11] Brazhkin V. V., Lyapin A. G., Popova S. V., Voloshin R. N., “Solid-phase disordering of bulk Ge and Si samples under pressure,” JETP Letters, Vol. 56, Iss. 3, pp. 152, 1992.
[12] Stewart J. Clark, Matthew D. Segall, Chris J. Pickard, Phil J. Hasnip, Matt I. J. Probert, Keith Refson, and Mike C. Payne, “First principles methods using CASTEP,” Zeitschrift für Kristallographie - Crystalline Materials, Vol. 220, Iss. 5/6, pp. 567–570, 2009.
[13] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, 78, 1396 (1997).
[14] M J Gillan, “Calculation of the vacancy formation energy in aluminium,” Journal of Physics: Condensed Matter, 1, 689 (1989).
[15] QuantumATK P-2019.03 Reference Manual; https://docs.quantumatk.com/manual/manual.html
[16] D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier, H. Jaouen, and A. Ghetti, “Strained Si, Ge, and Si1−xGex alloys modeled with a first-principles-optimized full-zone k∙p method” Physical Review B 74, 195208 (2006).
[17] M. Murayama and T. Nakayama “ Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces” Physical Review B 49, 4710 (1994).
[18] S Q Wang and H Q Ye “Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge” Journal of Physics: Condensed Matter 15 5307 (2003).
Chpater 3
[1] S. M. SZE and J. C. IRVIN “Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K” Solid-State Electronics Vol. 11, Iss. 6, pp. 599-602, 1968.
[2] A. Lubow, S. Ismail-Beigi, and T. P. Ma. “Comparison of drive currents in metal-oxide-semiconductor field-effect transistors made of Si, Ge, GaAs, InGaAs, and InAs channels” Applied Physics Letters 96, 122105 (2010).
[3] D. L. John, L. C. Castro, and D. L. Pulfrey “Quantum capacitance in nanoscale device modeling” J. Appl. Phys. 96, 9 (2004)
[4] Shinichi Takagi, Toshifumi Irisawa, Tsutomu Tezuka, Toshinori Numata, Shu Nakaharai, Norio Hirashita, Yoshihiko Moriyama, Koji Usuda, Eiji Toyoda, Sanjeewa Dissanayake, Masato Shichijo, Ryosho Nakane, Satoshi Sugahara, Mitsuru Takenaka, and Naoharu Sugiyama “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance” IEEE Transactions on Electron Devices, Vol. 55, No. 1, 2008.
[5] K. Natori, “Ballistic metal‐oxide‐semiconductor field effect transistor,” J. Appl. Phys. 76, 4879 (1994)
[6] Farzin Assad, Zhibin Ren, Dragica Vasileska, Supriyo Datta, and Mark Lundstrom, “On the Performance Limits for Si MOSFET’s: A Theoretical Study,” IEEE Transactions on Electron Devices, Vol. 47, No. 1, 2000.
[7] Anisur Rahman, Jing Guo, Supriyo Datta, and Mark S. Lundstrom “Theory of Ballistic Nanotransistors,” IEEE Transactions on Electron Devices, Vol. 50, No. 9, 2003.
[8] Abhijit Pethe, Tejas Krishnamohan, Donghyun Kim, Saeroonter Oh, H. -S. Philip Wong, and Krishna Saraswat “Investigation of the Performance Limits of III-V Double-Gate n-MOSFETs” In 2006 IEEE University/Government/Industry Microelectronics Symposium.p47-50
[9] Saumitra R. Mehrotra, Michael Povolotskyi, Doron Cohen Elias, Tillmann Kubis, Jeremy J. M. Law, Mark J. W. Rodwell, and Gerhard Klimeck “Simulation Study of Thin-Body Ballistic nMOSFETs Involving Transport in Mixed Γ-L Valleys” IEEE Electron Device Letters, Vol. 34, No. 9, 2013.
[10] J.S. Blakemore “Approximations for Fermi-Dirac integrals, especially the function F12(η) used to describe electron density in a semiconductor” Solid-State Electronics Vol. 25, Iss. 11, pp. 1067-1076, 1982.
[11] Lixin Ge, Francisco Gámiz, Glenn (Chip) O. Workman, and Surya Veeraraghavan “On the Gate Capacitance Limits of Nanoscale DG and FD SOI MOSFETs” IEEE Transactions on Electron Devices, Vol. 53, No. 4, 2006.
[12] Himadri S. Pal, Kurtis D. Cantley, Shaikh Shahid Ahmed, and Mark S. Lundstrom “Influence of Bandstructure and Channel Structure on the Inversion Layer Capacitance of Silicon and GaAs MOSFETs” IEEE Transactions on Electron Devices, Vol. 55, No. 3, 2008.
[13] D. Jin, D. Kim, T. Kim and J. A. del Alamo. Quantum capacitance in scaled down III–V FETs. 2009; In IEEE International Electron Devices Meeting (IEDM), 1-4
Chpater 4
[1] T. Ali , P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, P. Steinke, J. Calvo, K. Zimmermann, and J. Müller, “High Endurance Ferroelectric Hafnium Oxide-Based FeFET Memory Without Retention Penalty,” IEEE Transactions on Electron Devices, Vol. 65, Iss. 9, 2018.
[2] Stefan Mueller, Scott R. Summerfelt, Johannes Müller, Uwe Schroeder, and Thomas Mikolajick, “Ten-Nanometer Ferroelectric Si:HfO2 Films for Next-Generation FRAM Capacitors,” IEEE Electron Device Letters, Vol. 33, Iss. 9, 2012.
[3] M. H. Lee, P.-G. Chen, S.-T. Fan, Y.-C. Chou, C.-Y. Kuo, C.-H. Tang, H.-H. Chen, S.-S. Gu, R.-C Hong, Z.-Y. Wang, S.-Y. Chen, C.-Y. Liao, K.-T. Chen, S. T. Chang, M.-H. Liao, K.-S. Li and C. W. Liu, “Ferroelectric Al:HfO2 Negative Capacitance FETs,” IEEE International Electron Devices Meeting (IEDM), pp. 565–568, 2017.
[4] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” Journal of Materials Research, Vol. 11, Iss. 11, pp. 2757-2776, 2011.
[5] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, “Ferroelectricity and antiferroelectricity of doped thin HfO2-based films,” Advanced Materials, 27, 1811–1831, 2015.
[6] Tran Doan Huan, Vinit Sharma, George A. Rossetti, Jr., and Rampi Ramprasad, “Pathways Towards Ferroelectricity in Hafnia,” Physical Review B, 90, 064111, 2014.
[7] S. Clima, D. J. Wouters, C. Adelmann, T. Schenk, U. Schroeder, M. Jurczak, and G. Pourtois, “Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: A first principles insight,” Applied Physics Letters, 104, 092906, 2014.
[8] Rohit Batra, Tran Doan Huan, Jacob L. Jones, George Rossetti, Jr., and Rampi Ramprasad, “Factors Favoring Ferroelectricity in Hafnia: A First-Principles Computational Study,” The Journal of Physical Chemistry C, 121, 8, pp. 4139−4145, 2017.
[9] QuantumATK P-2019.03 Reference Manual; https://docs.quantumatk.com/manual/manual.html
[10] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, 77, 3865, 1997.
[11] G. Henkelman, Blas P. Uberuaga and Hannes Jónsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” Journal of Chemical Physics, 113, 9901, 2000.
[12] N. A. Spaldin, “A beginner's guide to the modern theory of polarization,” Journal of Solid State Chemistry, Vol. 195, pp. 2-10, 2012.
[13] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder and U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Applied Physics Letters, 99, 102903 (2011).
[14] E. H. Kisi, C. J. Howard, and R. J. Hill, “Crystal Structure of Orthorhombic Zirconia in Partially Stabilized Zirconia,” Journal of the American Ceramic Society, Vol. 72, Iss. 9, pp. 1757-1760, 1989.
[15] Sungwon Kim and Venkatraman Gopalan, “Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate,” Applied Physics Letters 80, 2740, 2002.
Chpater 5
[1] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder and U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Applied Physics Letters, 99, 102903 (2011).
[2] E. H. Kisi, C. J. Howard, and R. J. Hill, “Crystal Structure of Orthorhombic Zirconia in Partially Stabilized Zirconia,” Journal of the American Ceramic Society, Vol. 72, Iss. 9, pp. 1757-1760, 1989.
[3] Osamu Ohtaka, Hiroshi Fukui, Taichi Kunisada, Tomoyuki Fujisawa, Kenichi Funakoshi, Wataru Utsumi, Tetsuo Irifune and Koji Kuroda, and Takumi Kikegawa, “Phase Relations and Volume Changes of Hafnia under High Pressure and High Temperature,” Journal of the American Ceramic Society, Vol. 84, Iss. 6, pp. 1369−1373, 2001.
[4] Zhen Fan, Jingsheng Chen and John Wang, “Ferroelectric HfO2-based materials for next-generation ferroelectric memories,” Journal of Advanced Dielectrics, Vol. 06, No. 02, 1630003, 2016.
[5] J. Tang, F. Zhang, P. Zoogman, J. Fabbri, S.‐W. Chan, Y. Zhu, L. E. Brus and M. L. Steigerwald, “Martensitic Phase Transformation of Isolated HfO2, ZrO2, and HfxZr1 – xO2 (0 < x < 1) Nanocrystals,” Advanced Functional Materials, Vol. 15, Iss. 10, pp. 1595-1602, 2005.
[6] M J Gillan, “Calculation of the vacancy formation energy in aluminium,” Journal of Physics: Condensed Matter, Vol. 1, No. 4, pp. 689-711, 1989.
[7] Johannes Müllerm Tim S. Böscke, Uwe Schröder, Stefan Mueller, Dennis Bräuhaus, Ulrich Böttger, Lothar Frey, and Thomas Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Letters, 12, pp. 4318-4323, 2012.
[8] R. Materlik, C. Künneth, and A. Kersch, “The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model,” J. Appl. Phys., 117, 134109, 2015.
[9] Sungwon Kim and Venkatraman Gopalan, “Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate,” Applied Physics Letters 80, 2740, 2002.
[10] Tao Li, Nian Zhang, Zhenzhong Sun, Chunxiao Xie, Mao Ye, Sayantan Mazumdar, Longlong Shu, Yu Wang, Danyang Wang, Lang Chen, Shanming Ke, and Haitao Huang, “Epitaxial ferroelectric Hf0.5Zr0.5O2 thin film on a buffered YSZ substrate through interface reaction,” Journal of Materials Chemistry C, 6, pp. 9224-9231, 2018.
[11] M. Hoffmann, B. Max, T. Mittmann, U. Schroeder, S. Slesazeck and T. Mikolajick, “Demonstration of High-speed Hysteresis-free Negative Capacitance in Ferroelectric Hf0.5Zr0.5O2,” IEEE International Electron Devices Meeting (IEDM), pp. 727–730, 2018.
[12] Weijun Zheng, Kit H. Bowen, Jun Li, Iwona Da̧bkowska, and Maciej Gutowski, “Electronic Structure Differences in ZrO2 vs HfO2,” The Journal of Physical Chemistry A, 109, 50, pp 11521–11525, 2005.
Chpater 6
[1] S. C. Lee and A. S.Oates, “On the Voltage Dependence of Copper/Low-K Dielectric Breakdown,” IEEE IRPS, pp.3A.3.1-3A.3.6, 2015
[2] J. Suñé, I. Placencia, N. Barniol, E. Farrés, and X. Aymerich, “Degradation and Breakdown of Gate Oxides in VLSI Devices,” Physica Status Solidi (a) Volume 111, Issue 2, pages 675–685, 1989
[3] S. C. Lee and A. S. Oates, “Reliability Limitations to the Scaling of Porous Low-K Dielectrics”, in IEEE Int. Reliability Physics Symposium (IRPS), 2011, pp.155-159
[4] F-C Chiu, “A Review on Conduction Mechanisms in Dielectric Films,” Advances in Materials Science and Engineering 578168, 2014
[5] P. T. Liu, T.C. Chang , K.C. Hsu , T.Y. Tseng , L.M. Chen , C.J. Wang , S.M. Sze, “Characterization of porous silicate for ultra-low k dielectric application,” Thin Solid Films 414, 1–6, 2002
[6] S. C. Lee and A. S. Oates, “A Percolation Defect Nucleation And Growth Model For Assessment Of The Impact Of Low-K Dielectric Breakdown On Circuit Reliability,” in IEEE IRPS 5B-1.1-5B-1.9, 2017
[7] F. Palumbo, M. Eizenberg, and S. Lombardo, “General Features of Progressive Breakdown in Gate Oxides: a Compact Model”, in IEEE IRPS pp.5A.1.1-5A.1.6, 2015
[8] Y-C Yeo, Q. Lu, and Chenming Hu, “MOSFET Gate Oxide Reliability: Anode Hole Injection Model and its Applications,” Int. J. Hi. Spe. Ele. Syst. 11, 849, 2001
[9] K. Okada, K. Kurimoto, and M. Suzuki s, “ Intrinsic Mechanism of Non-Linearity in Weibull TDDB Lifetime and its Impact on Lifetime Prediction,” in IEEE IRPS 2A-4.1-2A-4.5, 2015
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74521-
dc.description.abstract在本篇論文中著重於以第一原理進行藍絲黛爾結構鍺以及氧化鉿基鐵電材料之特性分析。此外,亦會探討低介電係數介電材料於後段製程線路之介質崩潰以及可靠度分析。
當電晶體尺寸持續微縮後,使用具有高遷移率的通道材料來增加驅動電流或降低能耗是未來半導體元件發展的方向之一,為了追求高效能的通道表現,使用新穎之材料如三五族半導體是一可嘗試的方法,或者使用相同材料但不同結構之主流製程材料達成高遷移率同時降低成本。在論文的第一部分將會針對鍺之同素異形體,藍絲黛爾鍺進行特性分析,包含其能帶結構、等效質量、彈道電流以及應變響應等皆會詳細分析。具有穩定結構之藍絲黛爾鍺預期能有效提升元件表現而不改變其材料構成,而其直接能隙之特性亦利於用於光電元件之應用。
在提升元件表現特性的同時,降低其能耗亦是極為重要的一環。在不降低元件的驅動電流以及操作頻率的前提下,降低元件的操作電壓為降低其操作功率的有效手段。在設計上,元件之截止電流須保持相同或者更低以保持低靜態功率,與此同時,亦須保持高的操作電流,因此,盡可能降低元件之次臨界擺幅十分重要。然而,傳統電晶體的次臨界擺幅在室溫時有著60 mV/dec 的極值限制,需要使用其他方法使其次臨界擺幅能進一步降低。負電容電晶體為一有效克服傳統次臨界擺幅極限值之方法。加入鐵電材料到閘極堆疊的負電容場效應電晶體,其利用鐵電材料內之偶極矩隨偏壓改變時改變極化方向之特性,將能使次臨界擺幅小於60 mV/dec。由於鐵電材料主要是藉由外加電場來改變極化方向,其主要操作方式為利用電極化方向與外加電場的關係,因此鐵電材料內之偶極矩隨著外加電場頻率不同而產生的變化十分重要。在論文的第二部分,將以第一原理進行正交結構氧化鋯鉿之特性分析,利用其能量與極化之關係確定其鐵電特性。以及,利用分子動力學模型計算其動態反應。除此之外,亦會探討應變對其造成之影響。
最後,在元件尺寸不斷微縮的過程中,其失效機制亦是十分重要的一環,故在此論文中亦會探討後段製程中介電層的崩潰機制,造成介電層崩潰的原因可能為施加電場或是漏電流造成,如何精確的了解其機制並藉此預測其可靠度變化是十分重要的。藉由後段製程中介電層之漏電流以及時依性介電層崩潰之數據,建立可靠度的模型,藉以進行元件於正常使用狀態下之可靠度預測。
zh_TW
dc.description.abstractIn this dissertation, the characteristic of lonsdaleite germanium as the novel channel material and hafnia-based ferroelectric material are investigated. Besides, the failure model of the low-k dielectrics in the back-end-of-line is also discussed.
As the device keeps scaling down, the high mobility channels are proposed to enhance drive current and reduce power consumption. To pursue high performance channels, new material such as III-V semiconductor is one way to explore. Alternatively, the same material with an optimum crystalline structure is more cost-effective to obtain high mobility. In the first part of this dissertation, lonsdaleite Ge, the allotrope of diamond structure Ge is discussed including the bandstructure, effective mass, ballistic current and strain response. The stable lonsdaleite Ge has the potential to enhance the performance of n-channel FETs without introducing new materials. The direct-bandgap characteristic also makes lonsdaleite Ge potentially useful for photonic applications.
When the performance of devices enhances, it is also important to reduce the static power consumption. Transistor operating frequency and capacitance cannot be lowered in pursuit of higher speed and on current. Therefore, lowering VDD is the solution to reduce the dynamic switching power as technology node progress. In the transistor design, IOFF should remain the same or become even lower to maintain the low static power (IOFFVDD), and ION should become larger for decreasing VDD. As a result, devices with steep subthreshold slope (SS) are desired. However, SS of the traditional transistor is limited at 60 mV/decade at room temperature due to the thermionic emission transport mechanism. Negative capacitance FET (NCFET) is a method to overcome the limited SS. Ferroelectric material can be used to amplify the gate voltage by the internal polarization of it. A capacitor made with such a ferroelectric material can exhibit “negative capacitance,” where the stored charge in a stable state is negative with respect to the applied voltage. Such negative capacitance can be exploited for “voltage amplification”. This voltage amplification can be exploited in the gate-stack of a transistor in order to achieve SS < 60 mV/decade without changing the transport physics of the FET. However, it remains challenging whether the operation speed of NCFETs is applicable for high-speed circuit. Therefore, the research of the transient behavior of ferroelectric is important for the development of NCFET. In the second part of this dissertation, the characteristic of the HfO2 ferroelectric material with different Zr content is calculated by first principle. And the dynamic polarization with time is calculated based on density functional theory (DFT) and molecular dynamic model. The metastable life time of HfZrO2 is smaller than 0.2 ps, which has potential of high-speed operation for device applications. In addition, the strain response of HfO2 is also discussed.
Finally, the breakdown mechanism of the back-end-of-line (BEOL) dielectric is investigated since it has become an important failure mechanism with the reduction of device dimensions. Several models of the breakdown process have been proposed, with the mechanisms being broadly classified as being dependent on the dielectric electric field, or the leakage current through the dielectric under a voltage bias. The most pressing issue to be resolved for accurate reliability estimation of BEOL dielectrics is the field dependence of the breakdown mechanism. By combining modeling of the leakage current of BEOL capacitors with time dependent dielectric breakdown (TDDB) data, we show that the hard breakdown of capacitors during electrical stress is related to the leakage current flowing through the dielectric. Moreover, we find the breakdown occurs after a critical energy density has been dissipated in the dielectric.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:40:29Z (GMT). No. of bitstreams: 1
ntu-108-F01941080-1.pdf: 5170959 bytes, checksum: ab18c94596437953c657164b7047194f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsRelated Publication (相關論文發表) i
誌謝 iv
摘要 v
ABSTRACT vii
CONTENTS x
LIST OF FIGURES xiii
LIST OF TABLES xvii
Chpater 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 5
1.3 Reference 8
Chpater 2 Theoretical Investigation of Lonsdaleite Ge by First-Principles Calculations 10
2.1 Introduction 10
2.2 Structure and Phase Transition 11
2.3 Bandstructure and Effective Mass Calculations 15
2.4 Strain Effects on Bandgap and Effective Mass 21
2.5 Summary 26
2.6 References 27
Chpater 3 Electron Ballistic Currents of Lonsdaleite Ge Channels and Strain Response 29
3.1 Introduction 29
3.2 Effective Mass Extraction 30
3.3 Ballistic Transportation 32
3.4 Strain Effects on Ballistic Current 39
3.5 Summary 41
3.6 References 42
Chpater 4 Theoretical Investigation of Orthorhombic HfO2 Ferroelectric Materials 44
4.1 Introduction 44
4.2 Theoretical Methods 45
4.3 Energy Barrier and Polarization Calculation 46
4.4 Strain Response 50
4.5 Summary 52
4.6 Reference 53
Chpater 5 Phase Stability and Molecular Dynamics Calculation of ferroelectric HfxZr1-xO2 55
5.1 Introduction 55
5.2 Energy Calculation for Different Phase Structure 55
5.3 Energy Barrier and Polarization Calculation of HfxZr1-xO2 61
5.4 Metastable Life Time Calculation 64
5.5 Summary 66
5.6 References 67
Chpater 6 BEOL TDDB Reliability Modeling and Lifetime Prediction 69
6.1 Introduction 69
6.2 Test Structures 70
6.3 Calibration of Dielectric Thickness 71
6.4 Current Conduction Mechanisms 74
6.5 The Correlation between Current and TDDB 78
6.6 Summary 86
6.7 References 87
Chpater 7 Summary and Future Work 89
7.1 Summary 89
7.2 Future Work 91
dc.language.isoen
dc.title第一原理新穎通道與鐵電材料研究及後端依時性介電崩潰之可靠度模型zh_TW
dc.titleFirst-Principle Calculation of Novel Channel and Ferroelectric Materials with additional BEOL TDDB Reliability Modelingen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee張守進(Shoou-Jinn Chang),廖洺漢(Ming Han, Liao),唐毓慧(Yu?Hui Tang),張書通(Shu-Tong Chang),林楚軒(Chu-Hsuan Lin)
dc.subject.keyword藍絲黛爾鍺,能帶結構,等效質量,彈道電流,應變響應,次臨界斜率,負電容元件,動態切換,鐵電材料,極化,第一原理,分子動力學,後段製程線路,時依性介電層崩潰,zh_TW
dc.subject.keywordlonsdaleite Ge,bandstructure,effective mass,ballistic current,strain response,subthreshold slope,negative capacitance,dynamic switching,ferroelectric material,polarization,first principle,molecular dynamic,back-end-of-line,time dependent dielectric breakdown,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201901299
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
5.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved