請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74517完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于天立 | |
| dc.contributor.author | Yu-Wen Chen | en |
| dc.contributor.author | 陳郁文 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:40:15Z | - |
| dc.date.available | 2022-08-16 | |
| dc.date.copyright | 2019-08-16 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-07 | |
| dc.identifier.citation | [1] Face Landmark Detection. http://dlib.net/. Accessed 30 July 2019.
[2] FaceNet Model. https://github.com/davidsandberg/facenet/. Accessed 30 July 2019. [3] A. Abate, M. Nappi, D. Riccio, and G. Sabatino. 2D and 3D Face Recognition: a Survey. Pattern Recognition Letters, 28:1885–1906, 2007. [4] Y.Adini,Y.Moses,andS.Ullman.FaceRecognition:theProblemofCompensating for Changes in Illumination Direction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:721–732, 1997. [5] D. Arthur and S. Vassilvitskii. K-means++: the Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo- rithms, pages 1027–1035. 2007. [6] Q. Cao, L. Shen, W. Xie, O. Parkhi, and A. Zisserman. VGGFace2: a Dataset for Recognising Faces Across Pose and Age. In Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition, pages 67–74. 2018. [7] W.Chen,X.Chen,J.Zhang,andK.Huang.BeyondTripletLoss:aDeepQuadruplet Network for Person Re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 403–412. 2017. [8] J. Deng, J. Guo, and N. Xue. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4690–4699. 2019. [9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pages 226–231. AAAI Press, 1996. [10] M. Fischler and R. Bolles. Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commu- nications of the ACM, 24:381–395, 1981. [11] Y. Gang, L. Jiawei, L. Jiayu, M. Qingli, and Y. Ming. Illumination Variation in Face Recognition a Review. In Proceedings of the Second International Conference on Intelligent Networks and Intelligent Systems, pages 309–311. 2009. [12] V. Klema and A. Laub. The Singular Value Decomposition: Its Computation and Some Applications. IEEE Transactions on Automatic Control, 25:164–176, 1980. [13] R. Laganie`re. Estimating Projective Relations in Images. In OpenCV 2 Computer Vision Application Programming Cookbook : over 50 Recipes to Master This Li- brary of Programming Functions for Real-time Computer Vision, chapter 9, pages 217–242. Packt Publishing, 2011. [14] R. Makwana. Illumination Invariant Face Recognition: a Survey of Passive Meth- ods. Procedia Computer Science, 2:101–110, 2010. [15] S. Moschoglou, S. Ploumpis, M. Nicolaou, A. Papaioannou, and S. Zafeiriou. 3DFaceGAN: Adversarial Nets for 3D Face Representation, Generation, and Trans- lation. arXiv:1905.00307, 2019. [16] C. Qi, H. Su, K. Mo, and L. Guibas. Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 652–660. 2017. [17] A. Ranjan, T. Bolkart, S. Sanyal, and M. Black. Generating 3D Faces Using Convo- lutional Mesh Autoencoders. In Proceedings of the European Conference on Com- puter Vision, pages 704–720. 2018. [18] S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP Algorithm. In Proceed- ings of the Third International Conference on 3-D Digital Imaging and Modeling, pages 145–152. 2001. [19] R. Rusu, N. Blodow, and M. Beetz. Fast Point Feature Histograms FPFH for 3D Registration. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 3212–3217. 2009. [20] R. Rusu, G. Bradski, R. Thibaux, and J. H. W. Garage. Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram. In Proceedings of the IEEE/RSJ In- ternational Conference on Intelligent Robots and Systems, pages 2155–2162. 2010. [21] Satya Mallick. Face Detection. https://www.learnopencv.com/tag/face-detection/. Accessed 30 July 2019. [22] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: a Unified Embedding for Face Recognition and Clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 815–823. 2015. [23] H. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep Metric Learning via Lifted Structured Feature Embedding. In Proceedings of the IEEE Conference on Com- puter Vision and Pattern Recognition, pages 4004–4012. 2016. [24] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the Thirty- First AAAI Conference on Artificial Intelligence, pages 4278–4284. 2017. [25] J. Wang and L. Perez. The Effectiveness of Data Augmentation in Image Classifica- tion Using Deep. arXiv:1712.04621, 2017. [26] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: a Modern Library for 3D Data Pro- cessing. arXiv:1801.09847, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74517 | - |
| dc.description.abstract | 人臉辨識一直是個熱門的研究領域,並且有廣泛的應用場合;然 而,在現實的應用下仍面臨了許多挑戰。其中一點是彩色照片辨識系 統準確度在不同光線環境下的表現並不穩定,也就是當實際應用的場 合環境光線與測試資料的環境光線不同時,辨識系統的準確度可能會 比預期的還要差許多。相較於彩色照片,深度圖和紅外影像在不同光 線環境下所拍攝出來的結果則較為穩定,因此,本論文著重在利用深 度圖和紅外影像的人臉辨識。
本論文的目標為利用合成出的三維人臉模型增強人臉辨識系統的準 確度和尋找適當的模型參數。論文首先介紹如何使用多視角深度圖和 彩色圖合成出完整的人臉模型,接下來提出三個合成人臉模型有所幫 助的使用情境。第一個例子是利用合成人臉模型做為訓練實例,並以 提升模型準確度。第二個例子是合成未知人臉模型,用以輔助挑選開 放式人臉識別模型的參數。第三個例子是利用合成人臉模型投影出多 視角的紅外影像,做為訓練資料,以提升模型準確度。除了以上使用 情境外,最後也提出了一些合成人臉模型可能有所幫助的應用方向。 | zh_TW |
| dc.description.abstract | Face recognition has been a hot research area for its wide range of applications; however, there are still many challenges in practice. One of the challenges is that the color image recognition system is not stable under different illumination conditions, that is, the performance of a face recognition system might be worse than the expectation in different environments. There- fore, this thesis focuses on depth maps and infrared images recognition system because depth maps and infrared images are relatively stable for different lighting.
The objective of this thesis is to use synthetic 3D facial models to en- hance the performance of face recognition system and select a suitable model parameter. First, we introduce the processing of 3D facial model synthesis, then propose three use cases which show that synthetic 3D facial models are useful. The first case is instance-based depth map recognition by using synthetic 3D facial models for training instances. The second case is unknown 3D facial model synthesis for the aids of the open-set face identification. We use synthetic unknown 3D facial models to predict the distance distribution of true unknown data. Lastly, the third case is multi-view infrared images synthesis using synthetic 3D facial model. In addition to these three cases, there are other applications that synthetic 3D facial model might be useful. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:40:15Z (GMT). No. of bitstreams: 1 ntu-108-R06921036-1.pdf: 7109082 bytes, checksum: c52b2abcddc142931c432775708bf0ae (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 1 Introduction .......... 1
2 3D facial model synthesis .......... 8 2.1 Face detection .......... 8 2.2 Preprocessing .......... 9 2.2.1 Segmentation .......... 10 2.2.2 Projection .......... 10 2.2.3 Point cloud refinement .......... 12 2.3 Registration .......... 14 2.3.1 Random Sample Consensus registration .......... 15 2.3.2 Iterative Closest Point registration algorithm .......... 17 2.4 Post-processing ..........18 2.5 Dataset description .......... 18 2.6 Summary ..........19 3 Instance-based depth map recognition system using synthetic 3D facial model .......... 21 3.1 Preprocessing .......... 22 3.2 Recognition .......... 25 3.2.1 Registration .......... 25 3.2.2 Distance calculation .......... 26 3.3 Experimental results .......... 28 3.3.1 Comparison of different registration methods .......... 28 3.3.2 Comparison of different training instances .......... 30 3.4 Summary .......... 31 4 Unknown 3D facial model synthesis for the aids of open-set face recognition .......... 33 4.1 Unknown 3D facial model synthesis .......... 36 4.2 Analyze synthesis results .......... 37 4.3 Summary .......... 40 5 Infrared images synthesis with the synthetic 3D facial model .......... 42 5.1 Synthesizing multi-view infrared image ..........43 5.2 Analysis of using synthesized infrared images .......... 45 5.3 Summary .......... 47 6 Conclusion .......... 49 Bibliography .......... 51 | |
| dc.language.iso | en | |
| dc.subject | 人臉辨識 | zh_TW |
| dc.subject | 點雲 | zh_TW |
| dc.subject | 紅外影像 | zh_TW |
| dc.subject | 深度圖 | zh_TW |
| dc.subject | 人臉模型合成 | zh_TW |
| dc.subject | Infrared image | en |
| dc.subject | Point cloud | en |
| dc.subject | Facial model synthesis | en |
| dc.subject | Depth map | en |
| dc.subject | Face recognition | en |
| dc.title | 三維人臉模型合成:人臉辨識補助 | zh_TW |
| dc.title | 3D Facial Model Synthesis: Aid for Face Recognition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊茆世芳,吳育任 | |
| dc.subject.keyword | 人臉辨識,人臉模型合成,深度圖,紅外影像,點雲, | zh_TW |
| dc.subject.keyword | Face recognition,Facial model synthesis,Depth map,Infrared image,Point cloud, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU201902781 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
