Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74506
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成
dc.contributor.authorYi-Lin Liuen
dc.contributor.author劉逸霖zh_TW
dc.date.accessioned2021-06-17T08:39:39Z-
dc.date.available2022-08-16
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-08
dc.identifier.citation[1] G. Binnig, C. F. Quate, and C. Gerber, 'Atomic Force Microscope,' Physical Review Letters, vol. 56, no. 9, pp. 930-933, Mar. 1986.
[2] L. Lianqing, X. Ning, L. Yilun, Z. Jiangbo, and L. Guangyong, 'Real-time position error detecting in nanomanipulation using Kalman filter,' in 2007 7th IEEE Conference on Nanotechnology (IEEE NANO), pp. 100-105, 2007.
[3] Y. Shuai, Z. Wang, N. Xi, Y. Wang, and L. Liu, 'AFM Tip Position Control in situ for Effective Nano-Manipulation,' IEEE/ASME Transactions on Mechatronics, vol. 23, pp. 1-1, 2018.
[4] F. Krohs, C. D. Onal, M. Sitti, and S. Fatikow, 'Towards Automated Nanoassembly With the Atomic Force Microscope: A Versatile Drift Compensation Procedure,' Journal of Dynamic Systems Measurement and Control, vol. 131, 2009.
[5] H. Lu and Y.-C. Fang, 'Sensorless image based positioning control strategy design for AFM systems,' in 2017 36th Chinese Control Conference (CCC), pp. 9801-9806, 2017.
[6] N. Vorbringer-Dorozhovets, B. Goj, T. Machleidt, K. H. Franke, M. Hoffmann, and E. Manske, 'Multifunctional nanoanalytics and long-range scanning probe microscope using a nanopositioning and nanomeasuring machine,' Measurement Science and Technology, vol. 25, no. 4, pp. 044006, 2014.
[7] M.-H. Chou, C.-C. Huang, Y.-L. Liu, H.-C. Chen, and L.-C. Fu, 'Novel Micro Scanning with Integrated Atomic Force Microscope and Confocal Laser Scanning Microscope,' in 2019 IEEE Conference on Control Technology and Applications (CCTA), 2019.
[8] M. B. Viani, T. E. Schäffer, G. T. Paloczi, L. I. Pietrasanta, B. L. Smith, J. B. Thompson, and M. Richter, 'Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers,' Review of Scientific Instruments, vol. 70, no. 11, pp. 4300-4303, Nov. 1999.
[9] G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner, and P. K. Hansma, 'Design and Modeling of a High-Speed AFM-Scanner,' IEEE Transactions on Control Systems Technology, vol. 15, no. 5, pp. 906-915, 2007.
[10] O. M. E. Rifai and K. Youcef-Toumi, 'On automating atomic force microscopes: an adaptive control approach,' in 2004 43rd IEEE Conference on Decision and Control (CDC), vol. 2, pp. 1574-1579, 2004.
[11] L. Mingjie, W. Zhaojing, and S. Zhongmin, 'Robust adaptive output-feedback controller design for stochastic nonlinear systems,' in 2010 Chinese Control and Decision Conference, pp. 1496-1499, 2010.
[12] I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, 'A New Scanning Method for Fast Atomic Force Microscopy,' IEEE Transactions on Nanotechnology, vol. 10, no. 2, pp. 203-216, 2011.
[13] A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, 'Combining Spiral Scanning and Internal Model Control for Sequential AFM Imaging at Video Rate,' IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 371-380, 2017.
[14] Y. K. Yong, S. O. R. Moheimani, and I. R. Petersen, 'High-speed cycloid-scan atomic force microscopy,' Nanotechnology, vol. 21, no. 36, pp. 365503, 2010.
[15] A. Bazaei, Y. K. Yong, and S. O. Moheimani, 'High-speed Lissajous-scan atomic force microscopy: scan pattern planning and control design issues,' Rev Sci Instrum, vol. 83, no. 6, pp. 063701, Jun 2012.
[16] J.-W. Wu, Y.-T. Lin, Y.-T. Lo, W.-C. Liu, and L.-C. Fu, 'Lissajous Hierarchical Local Scanning to Increase the Speed of Atomic Force Microscopy,' IEEE Transactions on Nanotechnology, vol. 14, no. 5, pp. 810-819, 2015.
[17] D.-W. Liu, K.-Y. Chang, M.-H. Chou, J-W. Wu, Y.-L. Liu, and L.-C. Fu, 'Design of a High-speed and High-precision Hybrid Scanner with a New Path Planning Strategy Based on Spatial Entropy,' in Proc. 2018 Annual American Control Conference, Milwaukee, pp. 2946-2951, Jun. 2018.
[18] C.-L. Chen, J.-W. Wu, Y.-T. Lin, L.-C. Fu, and M.-Y. Chen, 'Precision Sinusoidal Local Scan for Large-Range Atomic Force Microscopy With Auxiliary Optical Microscopy,' IEEE/ASME Transactions on Mechatronics, vol. 20, no. 1, pp. 226-236, 2015.
[19] Y. Zhang, Y. Fang, J. Yu, and X. Dong, 'Note: A novel atomic force microscope fast imaging approach: Variable-speed scanning,' Review of Scientific Instruments, vol. 82, no. 5, pp. 056103, May 2011.
[20] A. Ahmad, A. Schuh, and I. W. Rangelow, 'Adaptive AFM scan speed control for high aspect ratio fast structure tracking,' Review of Scientific Instruments, vol. 85, no. 10, pp. 103706, Oct. 2014.
[21] X. Ren, Y. Fang, H. Lu, and Y. Wu, 'An on-line scanning time allocation based variable speed scanning method for atomic force microscopies,' in 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 245-250, 2015.
[22] J. Ren and Q. Zou, 'Adaptive-scanning, near-minimum-deformation atomic force microscope imaging of soft sample in liquid: Live mammalian cell example?,' in 2016 American Control Conference (ACC), pp. 1235-1240, 2016.
[23] K. Wang, C. Manzie, and D. Nešić, 'Extremum-seeking-based adaptive scan for atomic force microscopy,' in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 2114-2119, 2017.
[24] M. Maiworm, C. Wagner, R. Temirov, F. S. Tautz, and R. Findeisen, 'Two-degree-of-freedom control combining machine learning and extremum seeking for fast scanning quantum dot microscopy,' in 2018 Annual American Control Conference (ACC), pp. 4360-4366, 2018.
[25] T. Bourgade, J. F. Sun, Z. Wang, R. Elsa, and A. Asundi, 'Compact Lens-less Digital Holographic Microscope for MEMS Inspection and Characterization,' Jove-Journal of Visualized Experiments, no. 113, Jul 2016.
[26] Y.-L. Liu, C.-C. Huang, H.-C. Chen, and L.-C. Fu, 'An On-line Variable Speed Scanning Method with Machine Learning Based Feedforward Control for Atomic Force Microscopy,' in 2019 12th Asian Control Conference (ASCC), Kitakyushu-shi, Japan, pp. 138-143, 2019.
[27] J. Curie and P. Curie, 'Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées,' Bull. Soc. Fr. Mineral., vol. 3, pp. 90, 1880.
[28] P. J. Chen and S. T. Montgomery, 'A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,' Ferroelectrics, 1980.
[29] H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, 'Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,' Journal of Applied Physics, Article vol. 82, no. 3, pp. 980-984, Aug 1997.
[30] C. A. Huang, L. Chuang, K. Hsu, S. Chung, and T. Chan, ' A novel physical failure analysis of MEMS motion sensor for interface inspection, ' Sixteenth International Symposium on Quality Electronic Design, Santa Clara, CA, pp. 561-564, 2015.
[31] C. Furlong and R. J. Pryputniewcz, 'Optoelectronic characterization of shape and deformation of MEMS accelerometers used in transportation applications,' Optical Engineering, vol. 42, no. 5, pp. 1223-1231, May 2003.
[32] J. B. He, W. Zhou, H. J. Yu, X. P. He, and P. Peng, 'Structural Designing of a MEMS Capacitive Accelerometer for Low Temperature Coefficient and High Linearity,' Sensors, vol. 18, no. 2, Feb 2018, Art. no. 643.
[33] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, 'A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,' IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, 2002.
[34] T. S. Ho, Y. C. Fai, and E. S. L. Ming, 'Simultaneous localization and mapping survey based on filtering techniques,' in 2015 10th Asian Control Conference (ASCC), pp. 1-6, 2015.
[35] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, 'Particle Filters for Mobile Robot Localization,' in Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. New York, NY: Springer New York, pp. 401-428, 2001.
[36] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, 'Monte Carlo localization for mobile robots,' in Proceedings 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1322-1328, 1999.
[37] A. Doucet, S. Godsill, and C. Andrieu, 'On sequential Monte Carlo sampling methods for Bayesian filtering,' Statistics and Computing, vol. 10, no. 3, pp. 197-208, July 2000.
[38] D. G. Lowe, 'Object recognition from local scale-invariant features,' in Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150-1157, 1999.
[39] H. Bay, T. Tuytelaars, and L. Van Gool, 'SURF: Speeded Up Robust Features,' in Computer Vision – ECCV 2006, Berlin, Heidelberg, pp. 404-417, 2006.
[40] N. Dalal and B. Triggs, 'Histograms of oriented gradients for human detection,' in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, pp. 886-893, 2005.
[41] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, 'BRIEF: Binary Robust Independent Elementary Features,' in 2010 European Conference on Computer Vision, Berlin, Heidelberg, pp. 778-792, 2010.
[42] D. G. Lowe, 'Distinctive Image Features from Scale-Invariant Keypoints,' International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004.
[43] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, 'ORB: An efficient alternative to SIFT or SURF,' in 2011 International Conference on Computer Vision, pp. 2564-2571, 2011.
[44] M. Ester, H.-P. Kriegel, #246, r. Sander, and X. Xu, 'A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise,' in Proceedings of 2nd International Conference on KDD, pp. 226–231, 1996.
[45] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning, vol. 1, MIT press, Cambridge, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74506-
dc.description.abstract原子力顯微鏡是一種高精度的探針掃描儀器,能夠得到奈米等級的樣本三維表面輪廓。原子力顯微鏡能廣泛應用於不同領域,如奈米科技、半導體、微機電,生物科學等。為了得到大範圍樣本的表面輪廓,我們需要知道原子力顯微鏡的探針與樣本之間的相對位置,以將探針放在正確的地方掃描。以微機電檢測為例,經過半導體加工後得到的樣本,我們需要檢查樣本上的一些關鍵尺寸,以確保得到的樣本有符合當初設計的規格。
原子力顯微鏡的探針定位問題包含未知的初始位置和系統的不確定性。原子力顯微鏡的掃描範圍(例如幾十微米)遠小於樣本的尺寸(例如幾毫米),因此在沒有其他顯微鏡像是光學顯微鏡的輔助下,單單只靠原子力顯微鏡得到的影像來定位是非常困難的。原子力顯微鏡在微機電樣本上得到的掃描圖像通常是具有極少特徵的簡單幾何形狀,因此增加了定位的難度。除此之外,系統的不確定性包括壓電平台的磁滯現象、熱漂移和解析度較差之雙平台(例如長行程平台)都會影響到定位的精度。
在本論文中,參考宏觀機器人的定位方法,我們提出了一種使用粒子濾波器的原子力顯微鏡探針定位演算法。我們將原子力顯微鏡掃描得到的圖像當作唯一的傳感器,將樣本的設計圖當作地圖。粒子濾波器中的感知模型則是基於一個特徵提取演算法。定位完成後,使用一個快速掃描演算法來掃描大範圍樣本,該算法結合了即時變速掃描和基於機器學習的前饋控制。透過上述的這些方法,我們可以完成原子力顯微鏡在大範圍樣本上的自動定位和快速掃描。
zh_TW
dc.description.abstractAtomic force microscopy (AFM) is a powerful instrument that has the ability to characterize sample topography on nanoscale resolution. AFM is widely used in different fields, such as nanotechnology, semiconductor, MEMS, bioscience, etc. In the case of obtaining 3D topography of a large range sample, we need to know the relative position of the AFM probe to the sample so that the probe will be placed in the right place. Taking MEMS inspection for instance, we need to inspect some critical dimensions on the sample to ensure that the sample meets specifications after certain semiconductor process.
The so-called AFM tip localization problem touches upon the issue of unknown initial position and system uncertainties. The scanning range of an AFM (e.g. tens of micrometers) generally is much smaller than the sample size (e.g. a few millimeters). Therefore, it is hard to localize the AFM tip position without other auxiliary microscopes, such as optical microscope. Moreover, the AFM scanned images on a MEMS sample typically involve only simple geometries with sparse features which usually leads to the difficulty of localization. Besides, the system uncertainties including piezoelectric scanner hysteresis, thermal drift, and coarse dual stage (e.g. long travel-range positioning stage) would affect positioning accuracy.
In this thesis, we propose an AFM tip localization method using particle filter referring to macro robot SLAM. We take the AFM scanned image as the unique sensor and the sample layout as the map. The sensor model of the particle filter is based on a feature extraction algorithm. After localization, the large range sample is scanned using a novel fast scanning algorithm combining on-line variable speed scan and machine learning based feedforward control. To verify the effectiveness of the proposed methods, both simulations and experiments are conducted, and the tip localization as well as speed of sample area are highly promising.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:39:39Z (GMT). No. of bitstreams: 1
ntu-108-R06921011-1.pdf: 5116658 bytes, checksum: 38d349c5f7c4be17783f2692abe0a35c (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 I
摘要 II
TABLE OF CONTENTS V
LIST OF FIGURES VIII
LIST OF TABLES XII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 3
1.2.1 AFM Localization 4
1.2.2 Variable speed scanning in AFM 9
1.3 Contribution 12
1.4 Thesis Organization 13
Chapter 2 Preliminaries 14
2.1 Basic Principles of Piezoelectric Stage 14
2.1.1 Piezoelectric effect 14
2.1.2 Hysteresis phenomenon 15
2.2 Working Principle of AFM 16
2.2.1 Tip-sample interaction modes 18
2.2.2 AFM scanning schemes 20
2.3 Principle of Particle Filter 22
2.3.1 Bayes filter 23
2.3.2 Particle filter 25
2.3.3 Sampling importance resampling 27
Chapter 3 Hardware Design 29
3.1 AFM Subsystem 30
3.1.1 Piezoelectric scanner 31
3.1.2 Measurement probe 32
3.2 Long-traveling Range Positioning Stage Subsystem 34
3.3 Hardware Devices for Control 37
Chapter 4 Methodology of AFM Localization 39
4.1 Procedure of MEMS Metrology Inspection 39
4.2 AFM Tip Localization Algorithm 40
4.2.1 Flowchart of the localization algorithm 41
4.2.2 Feature extraction based particle filter 43
4.2.3 Predictive path strategy 56
Chapter 5 Fast Scanning Algorithm 61
5.1 System Overview 61
5.2 On-line Variable Speed Scan 63
5.3 Gaussian Process Based Feedforward Control 65
Chapter 6 Simulation and Experiment 68
6.1 Experimental Setup 68
6.2 AFM Tip Localization 69
6.2.1 Simulation results for localization 69
6.2.2 Experiment result for localization on MEMS sample 74
6.2.3 Experiment result for localization on grating sample 81
6.3 Fast Scanning Algorithm 84
6.3.1 Simulation result for fast scanning algorithm 84
6.3.2 Experiment result for fast scanning algorithm on grating sample 86
6.4 MEMS Metrology Inspection 89
Chapter 7 Conclusion and Future Work 94
REFERENCES 95
dc.language.isoen
dc.title用於微機電檢測之原子力顯微鏡探針定位及高效率掃描方法zh_TW
dc.titleAFM Tip Localization and Efficient Scanning Method Applicate in MEMS Inspectionen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee練光祐,顏家鈺,張以全,陳永耀
dc.subject.keyword原子力顯微鏡,探針定位,粒子濾波器,變速掃描,前饋控制,zh_TW
dc.subject.keywordAtomic force microscope (AFM),tip localization,particle filter,variable speed,feedforward control,en
dc.relation.page97
dc.identifier.doi10.6342/NTU201902683
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved