Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74498
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇忠楨
dc.contributor.authorTing-Hsuan Yuen
dc.contributor.author于庭萱zh_TW
dc.date.accessioned2021-06-17T08:39:12Z-
dc.date.available2020-08-13
dc.date.copyright2019-08-13
dc.date.issued2019
dc.date.submitted2019-08-08
dc.identifier.citation行政院農委會動植物防疫檢疫局,2017。《106年防檢局屠檢數量統計》。台北:行政院農業委員會。
鄭幸雄。2015。兩段式高溫厭氧生物共消化程序開發應用。中工高雄會刊。第22卷第2期
Aluigi, A., C. Vineis, A. Varesano, G. Mazzuchetti, F. Ferrero, and C. Tonin. 2008. Structure and properties of keratin/PEO blend nanofibers. Euro. Polym. J., 44: 2465–2475
Angelidaki, I. and B. K. Ahring. 1992. Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 37: 808–812.
Angelidaki. I. and B. K. Ahring. 1994. Anaerobic digestion of manure at different ammonia loads: effect of temperature. Wat. Res. 28: 727–731.
Angelidaki, I. and W. Sanders. 2004. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 3: 117–129
Angelonidi, E. and S. R. Smith. 2015. A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water Environ. J. 29: 549–557.
AOAC. 1995. Official methods of analysis 16th ed. Assoc. Offic. Anal. Chem., Washington, DC, USA.
APHA. 1995. Standard methods for the examination of water and wastewater. 19th ed. Amer. Publ. Health Assoc., Washington, DC, USA.
Apodaca, G., and J. H. McKerrow , 1990. Expression of proteolytic activity by cultures of Trichophyton rubrum. J. Med. Vet. Mycol. 28, 159–171.
Bálint, B., Z. Bagi, A. Tóth, G. Rákhely, K. Perei, and K. L. Kovács. 2005. Utilization of keratin-containing biowaste to produce biohydrogen. Appl. Microbiol. Biotechnol. 69: 404–410.
Brandelli A. 2005. Hydrolysis of native proteins by a keratinolytic strain of Chryseobacterium sp. Ann. Microbiol. 55: 47–50.
Brandelli A. 2008. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess. Technol. 1: 105–116.
Brandelli, A., D. J. Daroit, and A. Riffel, 2010. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85: 1735–1750.
Cai, C. G. and X. D. Zheng. 2009. Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. J. Ind. Microbiol. Biotechnol. 36: 875–883.
Castellucci, S., S. Cocchi, E. Allegrini, and L. Vecchione. 2013. Anaerobic digestion and co-digestion of slaughterhouse wastes. J. Agric. Eng. Res. 44: 526-530.
Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin Chem. 8:130-2.
Chen, Y., J. J. Cheng, and K. S. Creamer. 2008. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99: 4044–4064.
Costa, J. C., S. G. Barbosa, and D. Z. Sousa. 2012. Effects of pre-treatment and bioaugmentation strategies on the anaerobic digestion of chicken feathers. Bioresour. Technol. 120: 114–119.
Cuetos, M. J., X. Gómez, M. Otero, and A. Morán. 2010. Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): Influence of heat and pressure pre-treatment in biogas yield. Waste Manag. 30 :1780–1789.
Esteban, M. B., A. J. García, P. Ramos, and M. C. Márquez. 2010. Sub-critical water hydrolysis of hog hair for amino acid production. Bioresour. Technol. 101: 2472–2476.
Evans, K. L., J. Crowder, and E. S. Miller. 2000. Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers. Can. J. Microbiol 46: 1004–1011.
Fakhfakh, N., S. Kanoun, L. Manni, and M. Nasri. 2009. Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather-degrading Bacillus licheniformis RPk. Can. J. Microbiol. 55: 427–436.
Fleischner, A. M. 1989. Keratin hydrolysate formulations and methods of preparation thereof, US Pat 4,818,520.
Forgács, G., M. Lundin, M. J. Taherzadeh, and I. S. Horváth. 2013. Pretreatment of chicken feather waste for improved biogas production. Appl. Biochem. Biotechnol. 169: 2016–2028.
Gousterova, A., M. Nustorova, I. Goshev, P. Christov, D. Braikova, K. Tishinov, T. Haertlé and P. Nedkov. 2003. Alkaline hydrolysis of waste sheep wool aimed as fertilizer. Biotechnol. Equip. 17: 140–145.
Gousterova, A., D. Braikova, I. Goshev, P. Christov, K. Tishinov, E. Vasileva‐Tonkova, T. Haertlé, and P. Nedkov. 2005. Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett. Appl. Microbiol. 40: 335–340.
Grazziotin, A., F. A. Pimentel, E. V. de Jong, and A. Brandelli. 2006. Nutritional improvement of feather protein by treatment with microbial keratinase. Anim. Feed Sci. Technol. 126: 135–144.
Gupta, R., and P. Ramnani. 2006. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70: 21–33.
Hansen H. K., I. Angelidaki, and B. K. Ahring. 1996. Anaerobic digestion of swine manure: inhibition by ammonia. Water Res. 32: 5–12.
Harmon, J. L., S. A. Svoronos, G. Lyberatos, and D. Chynoweth. 1993. Adaptive temperature optimization of continuous digesters. Biomass Bioenergy 5: 279–288
Hejnfelt, A. and I. Angelidaki. 2009. Anaerobic digestion of slaughterhouse by-products. Biomass Bioenergy. 33: 1046–1054.
Hill, P., H. Brantley, and M. Van Dyke. 2010. Some properties of keratin biomaterials: Kerateines. Biomaterials. 31: 585–93.
Ichida, J. M., L. Krizova, C. A. LeFevre, H. M. Keener, D. L. Elwell, and E. H. Burtt. 2001. Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J. Microbiol. Methods. 47: 199–208.
Jarrell, K. F., M. Saulanier, and A. Ley. 1987. Inhibition of methanogenesis in pure cultures by ammonia, fatty acids, and heavy metals, and protection against heavy metal toxicity by sewage sludge. Can. J. Microbiol. 33: 551–554.
Jones, L. N. 2001. Hair structure and anatomy and comparative anatomy. Clin. Dermatol. 19: 95–103.
Jou, C. J. G., Y. S. Chen, H. P. Wang, K. S. Lin, and H. S. Tai. 1999. Hydrolytic dissociation of hog‐hair by microwave radiation. Bioresour. Technol. 70: 111–113.
Kabir, M. M., G. Forgács, and I. S. Horváth. 2013. Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment. Process Biochem. 48: 575–580.
Kaparaju, P. L. N., and J. A. Rintala. 2003. Effects of temperature on post-methanation of degassed dairy cow manure in a farmscale biogas concept. Eniron. Technol. 24: 1315–1321.
Karthikeyan, R., S. Balaji, and P. K. Sehgal. 2007. Industrial applications of keratins–a review. J. Sci. Ind. Res. 66: 710–715.
Kim, W. K. and P. H. Patterson. 2000. Nutritional value of enzyme- or sodium hydroxide-treated feathers from dead hens. Poult. Sci. 79: 528–34.
Kim, W. K., E. S. Lorenz, and P. H. Patterson. 2002. Effect of enzymatic and chemical treatments on feather solubility and digestibility. Poult. Sci. 81: 95–8.
Kirchmayr, R., C. Resch, M. Mayer, S. Prechtl, M. Faulstich, R. Braun, and J. Wimmer. 2007. Anaerobic degradation of animal by-products. Page 159–191 in Utilization of by-products and treatment of waste in the food industry. V. Oreopoulou, W. Russ, ed. Springer, New York.
Korniłłowicz-Kowalska, T. and J. Bohacz. 2011. Biodegradation of keratin waste: Theory and practical aspects. Waste Manag. 31: 1689–1701.
Kunert, J., 1976. Keratin decomposition by dermatophytes. II: presence of S-sulfocysteine and cysteic acid in soluble decomposition products. Zeitschrift für Allg. Mikrobiologie. 16: 97–105.
Łaba, W., W. Kopeć, D. Chorążyk, A. Kancelista, M. Piegza, and K. Malik. 2015. Biodegradation of pretreated pig bristles by Bacillus cereus B5esz. Int. Biodeter. Biodegr. 100: 116–123.
Lee, L. D. and H. P. Baden. 1975. Chemistry and composition of the keratins. Int. J. Dermatol. 14: 161–71.
Liu, T. and Sung, S., 2002. Ammonia inhibition on thermophilic aceticlastic methanogens. Water Sci. Technol. 45: 113–120.
Massé, D. I., L. Masse, and F. Croteau. 2003. The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresour. Technol. 89: 57–62.
Mathur, S. P., G. Owen, H. Dinel, and M. Schnitzer. 1993. Determination of compost biomaturity. I: literature review. Biol. Agric. Hortic. 10: 65–85.
Mehta, R. S., R. J. Jholapara, and C. Sawant. 2013. Optimization of cultural conditions for extracellular keratinase production by Bacillus species isolated from poultry farm soil. Int. J. Pharm. Bio. Sciences. 4: 454–463.
Mitsuiki, S., M. Sakai, Y. Moriyama, M. Goto, and K. Furukawa. 2002. Purification and some properties of keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Biosci. Biotechnol. Biochem. 66: 164–167.
Mkoma, S. L., and Mabiki, F. P., 2011. Theoretical and practical evaluation of Jatropha as energy source biofuel in Tanzania. Page 181–200 in Economic Effect of Biofuel Production, in Tech. Bernardes, M.A.D.S. ed. Rijeka, Croatia.
Onifade, A. A., N. A. Al-Sane, A. A. Al-Musallam, and S. Al-Zarban. 1998. A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 66: 1–11.
Patinvoh, R. J., E. Feuk-Lagerstedt, M. Lundin, I. Sárvári Horváth, and M. J. Taherzadeh. 2016. Biological pretreatment of chicken feather and biogas production from total broth. Appl. Biochem. Biotechnol. 180: 1401–1415.
Patinvoh, R. J., O. A. Osadolor, K. Chandolias, I. Sárvári Horváth , and M. J. Taherzadeh. 2017. Innovative pretreatment strategies for biogas production. Bioresour. Technol. 224: 13–24.
Poopathi, S., and S. Abidha. 2008. Biodegradation of poultry waste for the production of mosquitocidal toxins. Int. Biodeterior. Biodegrad. 62: 479–482.
Radha, S., and P. Gunasekaran. 2009. Purification and characterization of keratinase from recombinant Pichia and Bacillus strains. Protein Expr. Purif. 64: 24–31.
Rajagopal, R., P. Rousseau, N. Bernet, and F. Béline. 2011. Combined anaerobic and activated sludge anoxic/oxic treatment for piggery wastewater. Bioresour. Technol. 102: 2185–2192.
Rajagopal, R., D. I. Massé, and G. Singh. 2013. A critical review on inhibition of anaerobic digestion process y excess ammonia. Bioresour. Technol. 143: 632–641.
Ramnani, P. and R. Gupta. 2004. Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnol. Appl. Biochem. 40: 191–196.
Rinzema, A., M. Boone, K. van Knippenberg, G. Lettinga. 1994. Bactericidal effect of long chain fatty acids in anaerobic digestion. Water Environ. Res. 66: 40–49.
Salminen, E., and J. Rintala. 2002. Anaerobic digestion of organic solid poultry slaughterhouse waste–a review. Bioresour. Technol. 83: 13–26.
Salminen, E., J. Einola, and J. Rintala. 2003. The methane production of poultry slaughtering residues and effects of pre-treatments on the methane production of poultry feather. Environ. Technol. 24: 1079–86.
Sinkiewicz, I., A. Śliwińska, H. Staroszczyk, and I. Kołodziejska. 2017. Alternative methods of preparation of soluble keratin from chicken feathers. Waste Biomass Valor. 8: 1043–1048.
Son, H. J., H. C. Park, H. S. Kim, and C. Y. Lee. 2008. Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol Lett. 30: 461–465.
Suh, H. J., and H. K. Lee. 2001. Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J. Protein Chem. 20: 165–169.
Syed, D. G., J. C. Lee, W. J. Li, C. J. Kim, and D. Agasar. 2009. Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour. Technol. 100: 1868–1871.
Van Reeuwijk L.P., 2002. Procedure for Soil Analysis. 6th ed. ISRIC. Wageningen, The Netherlands.
Vignardet, C., Y. C. Guillaume, L. Michel, J. Friedrich, and J. Millet. 2001. Comparison of two hard keratinous substrates submitted to the action of a keratinase using an experimental design. Int. J. Pharm. 224: 115–122.
Weiland, P. 2010. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85: 849–860.
Williams, C. M., C. S. Richter, Jr. J. M. MacKenzie, and J. C. H. Shih. 1990. Isolation, identification and characterization of a feather-degrading bacterium. Appl. Environ. Microbiol. 56: 1509–1515.
Xia, Y., D. I. Massé, T. A. McAllister, C. Beaulieu, and E. Ungerfeld. 2012. Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production. Waste Manage. 32: 404–409.
Xia, Y., D. K. Wang, Y. Kong, E. M. Ungerfeld, R. Seviour, and D. I. Massé. 2015. Anaerobic digestibility of beef hooves with swine manure or slaughterhouse sludge. Waste Manage. 38: 443–448.
Yamamura, S., Y. Morita, Q. Hasan, K. Yokoyama, and K. Tamiya. 2002. Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem. Biophys. Res. Commun. 294: 1138–1143.
Zhang, Y., R. Yang, W. Zhao. 2014. Improving digestibility of feather meal by steam flash explosion. J. Agric. Food Chem. 62: 2745–2751.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74498-
dc.description.abstract豬毛為含有高比例角蛋白的屠宰廢棄物,角蛋白的結構穩固使其不易被降解,但化學處理與角蛋白酶可將其分解並將其轉換為可溶性蛋白質。而厭氧消化可將廢棄物有機質轉換為可再生的能源利用,如沼氣。本研究目的為評估經前處理豬毛及水解液用於厭氧消化中對提升甲烷生成效率的影響。
本研究使用低濃度鹼液及菌株Bacillus licheniformis 11594分別進行前處理分解,為了實驗觀察,選擇具完整豬毛外形的處理組進行後續試驗。厭氧消化中皆添加豬糞污泥作為菌種來源,首先比較經過低濃度鹼液前處理或微生物前處理之乾燥豬毛與無添加豬毛的對照組之沼氣產氣量;再以含水解液的豬毛處理組及對照組進行沼氣產氣量比較;最後使用不同分解時間下,含水解液與豬毛的處理組作為消化受質對甲烷產量的影響。
在前處理試驗結果,鹼前處理可以顯著提高Bacillus spp分解效率,並隨培養時間提升分解率。而在厭氧消化實驗中,30日間豬毛鹼前處理與未處理組之總產氣量分別為1310與1443 mL,相較於產237 mL沼氣的污泥,含豬毛組別產氣量皆顯著較高;但鹼前處理組在甲烷生成量上顯著低於未處理組。而在不同分解時間下含水解液的全溶液試驗中,在短時間(4日)前處理組之總產氣量顯著最高,而其他兩者(8與16日)亦高於純污泥組;但在總甲烷生成量上,16日前處理與純污泥組則未產生顯著差異。另外,以含水解液與豬毛的溶液作為受質試驗中,純污泥產氣量高,且各處理組間沒有差異。應是由於厭氧消化反應器於試驗之初所接種的豬糞污泥,攜帶部分豬糞中未分解有機質,進而影響反應器中污泥對於難分解角蛋白之利用率,使豬毛添加效果不佳。綜上所述,乾燥豬毛添加於厭氧污泥中可顯著提升沼氣產量與甲烷量,但前處理不影響產氣效率;而使用含水解液豬毛受質時,4日前處理時間有最佳效果,且易分解有機質量也是共消化時的重要影響因子。
zh_TW
dc.description.abstractPig hair is one of slaughter wastes which contains high contents of keratins. The structure of keratins is recalcitrant made them hard to be biodegraded. But some chemical agents and keratinase are capable of destructing keratins to become soluble proteins. Besides, anaerobic digestion of organic matters in the slaughterhouse wastes can recover renewable energy, e.g. biogas, from the treatment process. The objective of this study was to evaluate the feasibility of biogas production from anaerobic digestion of alkali and microbial pretreated pig hair.
A combination of hydrolysis with low concentration alkali solution and biodegradation by Bacillus licheniformis 11594 strain was performed as the pretreatment process. Those treated pig hairs with obvious hair appearance were used as the substrate for all time course experiments. Pig manure sludge was used as the sole inoculum for all time course experiments of anaerobic digestion. For the first batch, gas production of pretreated dried pig hair, which was pretreated with alkaline or the biodegradation, was compared with control group which no pig hair was add. For the second batch, addition of pig hair and its hydrolysate were compared with the control group. For the third batch, anaerobic digestion of pig hair and hydrolysate for promoting the methane production under different degradation time periods was investigated.
Results of pig hair pretreatment experiments showed that the alkali pretreated pig hair increased the efficiency of microbial degradation by Bacillus spp. with prolonged cultivation time. Results of anaerobic digestion showed that the total gas production of alkali pretreated pig hair group and untreated pig hair group in a 30-d time period was 1310 and 1443 mL, respectively. Gas production of the group with pig hair addition increased significantly comparing to that of the control group (237 mL). However, the methane production in the alkali pretreated group was significantly lower than that of the untreated group. Among the hydrolysate addition groups under different degradation time period, the shorter cultivation time (a 4-d time period) group and the better its performance. Gas production of other groups (8- and 16-d time period) also much higher than that of the control group. Moreover, there was no significant difference between the 16-d time period pretreated group and the control in methane production. For the experiments of both pig hair and its hydrolysate addition, the control group carried out better gas production, but there was no significant difference on gas production between the control and any treatment groups. Because there were some easily biodegradable organic matters carried into anaerobic digester when inoculated with pig sludge. They might affect utilization of tough bio-degraded keratin and gas production during anaerobic digestion of pig hair.
In conclusion, addition of dried pig hair in anaerobic digesters increased gas and methane production, but pretreatment of pig hair did not affect the efficiency of gas production. When the pig hair hydrolysate was used as the substrate, the group of a 4-d biodegradation pretreatment achieved best results. Besides, easily decomposed organic matters content was an important factor of anaerobic digestion.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:39:12Z (GMT). No. of bitstreams: 1
ntu-108-R06626022-1.pdf: 2263295 bytes, checksum: ab6b8c0478ac2fafe1e3e7a98a27de9a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝誌 III
中文摘要 IV
Abstract V
目錄 VIII
圖目錄 XII
表目錄 XIV
第壹章、前言 1
第貳章、文獻回顧 2
一、 豬毛及其利用價值 2
(一) 豬毛主要來源及目前臺灣處理方式 2
(二) 臺灣及其他國家每年豬毛生產量 2
(三) 豬毛的營養價值 2
(四) 豬毛的結構組成 2
(五) 豬毛相關應用研究 4
二、 豬毛分解方式 5
(一) 化學處理 5
(二) 高壓高溫處理 5
(三) 微生物酵素分解 6
(四) 結合不同處理方式 6
三、 微生物分解豬毛的發展 7
(一) 角蛋白分解酵素的來源 7
(二) 分解作用 7
(三) Bacillus licheniformis菌株在分解角蛋白的研究 8
(四) 影響微生物分解效率的因素 9
(五) 以微生物分解豬毛之研究 11
四、 厭氧消化的研究發展 12
(一) 厭氧消化的用途 12
(二) 厭氧消化的過程 12
(三) 沼氣生成的限制及應用 14
(四) 厭氧消化常見抑制物 15
五、 副產物於厭氧消化的相關研究 17
(一) 提升厭氧消化效率策略 17
(二) 對消化效率的影響因子 17
(三) 前處理與否對角蛋白添加污泥的影響 20
(四) 終產物的處理 22
(五) 經濟效益 22
第貳章、材料方法 24
一、 材料製備 24
(一) 豬毛 24
(二) 微生物 24
(三) 厭氧污泥 24
二、 試驗設計 24
(一) 鹼前處理 24
(二) 微生物分解 25
(三) 厭氧消化 25
三、 厭氧消化裝置 30
四、 實驗流程示意圖 31
五、 測定項目 32
(一) 受質去除率 32
(二) 可溶性蛋白質濃度 32
(三) 酸鹼值 32
(四) 游離銨離子濃度 32
(五) 污泥總固形物(TS)、揮發性固形物(VS) 33
(六) 污泥總氮含量(TKN) 33
(七) 有機碳(TOC) 34
(八) 單日產氣量 35
(九) 氣相層析儀分析(GC analysis) 35
(十) 污泥有機質含量(COD) 35
(十一) 氨態氮(TAN) 36
六、 統計方法 37
第參章、結果與討論 38
一、前處理結果 38
(一) 鹼前處理 38
(二) 微生物分解處理 44
二、厭氧消化產氣效果 48
(一) 乾燥豬毛添加對產氣量影響 48
(二) 含水解液豬毛添加對產氣量影響 51
(三) 含不同前處理時間水解液豬毛添加對產氣量影響 54
(四) 乾燥豬毛添加對甲烷產量影響 57
(五) 含水解液豬毛添加對甲烷產量影響 61
(六) 含不同前處理時間水解液豬毛添加對甲烷產量影響 63
三、 可能影響產氣效率的指標 65
(一) pH值 65
(二) 銨離子 67
(三) 游離氨 70
四、 前處理對厭氧消化產氣量影響之討論 72
(一) 豬毛的理論產氣量與實驗差異 72
(二) 前處理對乾燥豬毛添加的影響 72
(三) 接種源對產氣影響 73
(四) 不同前處理時間對含水解液豬毛添加的影響 73
(五) 對前處理後豬毛消化效率的影響因子 74
第肆章、結論 75
第伍章、參考文獻 76
dc.language.isozh-TW
dc.subject豬毛zh_TW
dc.subject前處理zh_TW
dc.subject豬糞污泥zh_TW
dc.subject厭氧消化zh_TW
dc.subject沼氣zh_TW
dc.subjectBiogasen
dc.subjectPig hairen
dc.subjectPretreatmenten
dc.subjectPig manure sludgeen
dc.subjectAnaerobic digestionen
dc.title鹼前處理與Bacillus spp.生物分解後豬毛進行厭氧消化之研究zh_TW
dc.titleResearch on anaerobic digestion of pig hair after alkali pretreatment and biodegradation by Bacillus spp.en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉志忠,周楚洋,徐世勳
dc.subject.keyword豬毛,前處理,豬糞污泥,厭氧消化,沼氣,zh_TW
dc.subject.keywordPig hair,Pretreatment,Pig manure sludge,Anaerobic digestion,Biogas,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201902632
dc.rights.note有償授權
dc.date.accepted2019-08-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved