請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74492
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周中哲(CHUNG-CHE CHOU) | |
dc.contributor.author | Jing-Fu Hong | en |
dc.contributor.author | 洪經富 | zh_TW |
dc.date.accessioned | 2021-06-17T08:38:53Z | - |
dc.date.available | 2020-08-13 | |
dc.date.copyright | 2019-08-13 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-08 | |
dc.identifier.citation | 1. Benavent-Climent, A., Oliver-Saiz, E., & Donaire-Avila, J. (2015). New connection between reinforced concrete building frames and concentric braces: Shaking table tests. Engineering Structures, 96, 7-21.
2. Chen, Y., Wang, W., & Chen, Y. (2018). Full-scale shake table tests of the tension-only concentrically braced steel beam-through frame. Journal of Constructional Steel Research, 148, 611-626. 3. Chou C-C, Chung P-T, Tsai W-J. (2014). Dual-Core Self-Centering Buckling-Restrained Brace. US Patent (8763320,accepted in 2014/7/1). 4. Chou C-C, Chung P-T (2014). “Development of Cross-Anchored Dual-Core Self-Centering Braces for Seismic Resistance.” J. Constructional Steel Research, 101, 19-32. 5. Chou, C. C., & Chen, Y. C. (2015). Development of steel dual-core self-centering braces: quasi-static cyclic tests and finite element analyses. Earthquake Spectra, 31(1), 247-272. 6. Chou C-C, Chen Y-C, Chung P-T, Pham D-H, Liu J-H (2013). “Low-Damage Earthquake-Resisting Systems Using Sandwiched Buckling-Restrained Braces and Dual-Core Self-Centering Braces” Applied Mechanics and Materials, 353-356,1946-1958. 7. Chou, C. C., Chen, Y. C. (2013). “Development of Steel Dual-Core Self-Centering Braces: Quasi-Static Cyclic Tests and Finite Element Analyses” Earthquake Spectra (DOI 10.1193/082712EQS272M, available online September 6, 2013) 8. C. Christopoulos, R. Tremblay, H.-J. Kim, M. Lacerte (2008). “Self-Centering Energy Dissipative Bracing System for the Seismic Resistance of Structures: Development and Validation”. Journal of Structural Engineering, 134(1):96-107. 9. Christopoulos C, Filiatrault A, Uang CM, Folz B. Posttensioned energy dissipating connections for moment resisting steel frames. Journal of Structural Engineering 2002; 128(9):1111–1120. 10. Dong, H., Du, X., Han, Q., Bi, K., & Hao, H. (2019). Hysteretic performance of RC double-column bridge piers with self-centering buckling-restrained braces.Bulletin of Earthquake Engineering, 1-27. 11. Ju, M., Lee, K. S., Sim, J., & Kwon, H. (2014). Non-compression X-bracing system using CF anchors for seismic strengthening of RC structures. Magazine of Concrete Research, 66(4), 159-174. 12. Javadi, P., & Yamakawa, T. (2013). Retrofitting of RC Frames by Steel Braced Frames Utilizing a Hybrid Connection Technique.Journal of Advanced Concrete Technology,11(3), 89-107. 13. Lin C. L. (2006). “Seismic Behavior of Post-tensioned Steel Beam to Column Connection with Friction Devices”. MS thesis. Thesis Advisor: K. C. Tsai. National Taiwan University, Taipei, Taiwan. 14. Mousavi, S. A., & Zahrai, S. M. (2017). Slack free connections to improve seismic behavior of tension-only braces: An experimental and analytical study. Engineering Structures, 136, 54-67. 15. Mahrenholtz, C., Lin, P. C., Wu, A. C., Tsai, K. C., Hwang, S. J., Lin, R. Y., & Bhayusukma, M. Y. (2015). Retrofit of reinforced concrete frames with buckling‐restrained braces. Earthquake Engineering & Structural Dynamics, 44(1), 59-78. 16. Maegawa, T., Qu, Z., Kishiki, S., Maida, Y., Hamada, M., & Sakada, H. (2015, May). Local Damage Control of Unconstrained Gusset Connections for Buckling Restrained Braces in RC Frames. In IABSE Symposium Report (Vol. 104, No. 3, pp. 1-8). International Association for Bridge and Structural Engineering. 17. Maheri, M. R. (2009). Internal Steel Bracing of RC Frames. In 3rd International Conference on Concrete & Development, tehran, Iran. 18. Maheri, M. R., & Sahebi, A. (1997). Use of steel bracing in reinforced concrete frames.Engineering Structures,19(12), 1018-1024. 19. Ozcelik, R. (2011).Seismic upgrading of reinforced concrete frames with structural steel elements(Doctoral dissertation, PhD Thesis, Middle east technical University, Ankara, Turkey). 20. Priestley, M. J. N., S. Sritharan, et al. (1999). “Preliminary results and conclusions from the PRESSS five-story precast concrete test building”. PCI Journal, 44(6): 42-67. 21. Qu, Z., Xie, J., Wang, T., & Kishiki, S. (2017). Cyclic loading test of double K-braced reinforced concrete frame subassemblies with buckling restrained braces. Engineering Structures, 139, 1-14. 22. Qu, Z., Kishiki, S., Maida, Y., & Sakata, H. (2015). Subassemblage cyclic loading tests of buckling-restrained braced RC frames with unconstrained gusset connections.Journal of Structural Engineering,142(2), 04015128. 23. Qu, Z., Kishiki, S., Sakata, H., Wada, A., & Maida, Y. (2013). Subassemblage cyclic loading test of RC frame with buckling restrained braces in zigzag configuration. Earthquake Engineering & Structural Dynamics, 42(7), 1087-1102. 24. Ricles, J. M., R. Sause, et al. (2002). “Experimental evaluation of earthquake resistant posttensioned steel connections”. Journal of Structural Engineering, 128(7): 850-859. 25. Ricles, J. M., R. Sause, et al. (2001). “Posttensioned seismic-resistant connections for steel frames”. Journal of Structural Engineering, 127(2): 113-121 26. Youssef, M. A., Ghaffarzadeh, H., & Nehdi, M. (2007). Seismic performance of RC frames with concentric internal steel bracing.Engineering Structures,29(7), 1561-1568. 27. Zhang, J., Wu, B., Mei, Y., & Shing, P. B. (2015). Experimental and analytical studies on a reinforced concrete frame retrofitted with buckling-restrained brace and steel caging. Advances in Structural Engineering, 18(2), 155-171. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74492 | - |
dc.description.abstract | 近年來為改善鋼筋混凝土框構架之耐震性能,鋼斜撐補強廣泛應用在補強工法中,然而受限於鋼筋混凝土拉壓性能的差異,且鋼斜撐會發展顯著軸力,易使相鄰鋼筋混凝土構件承受複雜且不利之載重條件,則將逐步削減鋼斜撐原先設計性能。本研究透過改良鍾秉庭(2014)交錨型雙核心自復位斜撐,研發新型純壓雙核心自復位斜撐,使其擁有只受軸壓力的特性,並且保有雙核心自復位斜撐之零殘餘變形自復位能力以及斜撐的變形能力為傳統自復位斜撐的兩倍,能有效降低對拉力構件的線彈性變形量需求。本研究透過純壓雙核心自復位斜撐之力學行為,提出遲滯迴圈預測公式,並且利用有限元素分析(ABAQUS)加以驗證,接著進一步探討純壓雙核心自復位斜撐之預力大小、鋼筋號數、鋼筋長度參數研究,最後於國家地震工程研究中心進行一組實尺寸純壓雙核心自復位斜撐試驗(3.9 m長),成功證明純壓雙核心自復位斜撐力學行為,且整體斜撐之實驗行為亦符合理論分析預測以及有限元素分析結果。 | zh_TW |
dc.description.abstract | In recent years, in order to improve the ability of earthquake-resisting in reinforced concrete frame structure , steel brace is widely used in retrofit method.However, because of the concrete weak behavior under tension and high tension in steel brace , it casuses complex load and unfavorable condition between steel brace and reinforced concrete member.Also,the origin design performace will gradually reduced.In this study,we develop a new self-centering brace called compression only dual-core self-centering brace (C-SCB) , which only demonstrates compression mechanics behavior and preserve original self-centering ability through modifying conventional dual-core self-centering brace (SCB) proposed by chou and chung (2014).In this study, a proposed mechanics behavior formula of C-SCB has been verified by ABAQUS infinite element anlysis and test program.In order to understand the influence of different parameter such as pretension force 、rebar area and rebar length in C-SCB ,mechamics behavior formula has also been demonstrated in parameter study.The C-SCB(3.9meter) full scale test program was done in NCREE and successfully validate its kinematics and cyclic performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:38:53Z (GMT). No. of bitstreams: 1 ntu-108-R06521232-1.pdf: 16173024 bytes, checksum: b2ac02c447b37942163074a8211fbb0a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 表目錄 viii 圖片目錄 x 照片目錄 xiv 第 1 章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 4 1.4 研究目的 7 1.5 研究內容 7 第 2 章 純壓雙核心自復位斜撐之力學行為 9 2.1 前言 9 2.2 整體力學行為 9 2.2.1 純壓雙核心自復位斜撐之力學行為 9 2.2.2 純壓雙核心自復位斜撐之行為預測方法 12 2.2.3 純壓雙核心自復位斜撐設計流程 20 2.2.4 純壓雙核心自復位斜撐預測公式與有限元素模型 21 2.2.5 純壓型與交錨型雙核心自復位斜撐預測公式比較分析 22 第 3 章 有限元素分析 23 3.1 前言 23 3.2 泛用型有限元素分析軟體ABAQUS介紹 23 3.2.1 ABAQUS / Standard 分析模組 23 3.2.2 ABAQUS / CAE 主要功能 24 3.3 有限元素分析模型建置 25 3.3.1 幾何模型 25 3.3.2 材料模型 27 3.3.3 元素性質 27 3.3.4 接觸性質 28 3.3.5 載重與邊界條件功能 29 3.3.6 約束功能 30 3.3.7 網格劃分 31 3.3.8 分析類型 33 3.4 有限元素分析流程 34 3.5 有限元素分析試驗結果 34 3.5.1 有限元素分析模型觀察 35 3.5.2 有限元素分析與力學行為預測公式比較 37 3.6 力學行為預測公式分析參數研究 39 3.7 純壓型與交錨型自復位斜撐之有限元素分析比較 43 第 4 章 純壓雙核心自復位斜撐之試體試驗與結果 45 4.1 前言 45 4.2 純壓雙核心自復位斜撐之試驗與試體設計 45 4.2.1 水平側向位移與軸向位移之關係 45 4.2.2 純壓自復位系統之受壓構件斷面設計 46 4.2.3 純壓自復位系統之端板設計 49 4.2.4 純壓自復位系統之拉力構件設計 49 4.2.5 消能鋼筋之設計 51 4.2.6 材料性質 53 4.2.7 消能鋼筋試驗 53 4.2.8 消能鋼筋試驗現象分析 53 4.2.9 試體試驗構架裝置與加載歷時 54 4.3 純壓雙核心自復位斜撐試體製造與試驗方式 57 4.3.1 試體製造 57 4.3.2 拉力構件施拉預力 58 4.3.3 試驗方式 59 4.4 純壓雙核心自復位斜撐試驗現象與結果分析 61 4.4.1 試驗現象 61 4.4.2 試驗分析 65 4.4.3 理論預測、有限元素分析與試驗結果比較 66 4.4.4 純壓型與交錨型雙核心自復位斜撐試驗分析比較 67 第 5 章 結論 69 參考文獻 71 | |
dc.language.iso | zh-TW | |
dc.title | 應用於鋼筋混凝土建築物之純壓雙核心自復位斜撐發展與驗證 | zh_TW |
dc.title | Development and Validation of a Compression Only Dual-Core Self-Centering Brace Applied to Reinforced Concrete Buildings | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃世建(SHYH-JIANN HWANG),陳沛清(Pei-Ching Chen) | |
dc.subject.keyword | 自復位斜撐,鋼筋混凝土補強,純拉型鋼斜撐,純壓型鋼斜撐,消能鋼筋, | zh_TW |
dc.subject.keyword | Dual-Core Self-Centering Brace,Energy-Dissipating Bars,Tension Only,Compression Only,RC Frames Retrofit, | en |
dc.relation.page | 170 | |
dc.identifier.doi | 10.6342/NTU201902833 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 15.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。