Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 健康行為與社區科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74471
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張齡尹(Ling-Yin Chang)
dc.contributor.authorMu-Min Wuen
dc.contributor.author吳慕皿zh_TW
dc.date.accessioned2021-06-17T08:37:41Z-
dc.date.available2021-02-23
dc.date.copyright2021-02-23
dc.date.issued2021
dc.date.submitted2021-01-24
dc.identifier.citation一、中文部分
中華民國眼科醫學會. (2019). 2019全民護眼趨勢調查. 未出版之統計數據, http://www.oph.org.tw/.
李思賢, 張弘潔, 李蘭, 吳文琪. (2006). 家庭及學校的社會資本與國小學童內化行為問題之關係.。 中華心理衛生學刊, 19(3), 231-253.
科技部傳播調查資料庫二期第二次. (2018). 媒介使用與社會互動. 台灣傳播調查資料庫, http://www.crctaiwan.nctu.edu.tw/AnnualSurvey_detail.asp?ASD_ID=34.
國家發展委員會. (2018). 106年網路沉迷研究(AE120002). 【原始數據】取自中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫, doi:10.6141/TW-SRDA-AE120002-120001.
教育部統計處. (2020). 各級學校學生淨在學率. https://www.gender.ey.gov.tw/gecdb/Stat_Statistics_DetailData.aspx?sn=SzkhKs3R1tSucXEiKsq39Q%33D%33D.
黃春太, 姜逸群, 黃雅文, 胡益進. (2008). 臺南縣國中生社會資本與幸福感之相關研究。健康促進與衛生教育學報,. (29), 27-50. doi:10.7022/jhphe.200806.0027
鄭惠玲, 江東亮. (2002). 臺灣的社會資本與自評健康。台灣公共衛生雜誌 21(4), 289-295. doi:10.6288/tjph2002-21-04-07
蕭怡真, 陳俊元. (2014). 保護傘或雙面刃?談社會資本對多重物質濫用之影響. 中華心理衛生學刊, 27(1), 1-36. doi:10.30074/fjmh.201403_27(1).0001
二、英文部分
Abarca-Sos, A., Bois, J. E., Aibar, A., Antonio Julián, J., Generelo, E., Zaragoza, J. (2016). Sedentary Behaviors by Type of Day and Physical Activity in Spanish Adolescents: A Socio-Ecological Approach. Percept Mot Skills, 122(1), 286-298. doi:10.1177/0031512515627066
Adam, E. K., Chyu, L., Hoyt, L. T., Doane, L. D., Boisjoly, J., Duncan, G. J., . . . McDade, T. W. (2011). Adverse adolescent relationship histories and young adult health: cumulative effects of loneliness, low parental support, relationship instability, intimate partner violence, and loss. J Adolesc Health, 49(3), 278-286. doi:10.1016/j.jadohealth.2010.12.012
Alert, M. D. (2017). The Trajectory of Sedentary Behavior from Adolescence to Emerging Adulthood.
Allison, P. D. (2000). Multiple Imputation for Missing Data: A Cautionary Tale. Sociological Methods Research, 28(3), 301-309. doi:10.1177/0049124100028003003
American Academy of Pediatrics (2016). American Academy of Pediatrics Announces
New Recommendations for Children's Media Use. Retrieved from
https://www.pathwaypeds.com/american-academy-of-pediatrics-announces-new-recommendations-for-childrens-media-use/
Benaich, S., Mehdad, S., Andaloussi, Z., Boutayeb, S., Alamy, M., Aguenaou, H., Taghzouti, K. (2020). Weight status, dietary habits, physical activity, screen time and sleep duration among university students. Nutr Health, 260106020960863. doi:10.1177/0260106020960863
Bezerra, I. A., Goes, P. S. A. d. (2014). Association between social capital and oral health conditions and behavior. [Associação entre capital social, condições e comportamentos de saúde bucal]. Ciencia saude coletiva, 19(6), 1943-1950. doi:10.1590/1413-81232014196.06242013
Bolin, K., Lindgren, B., Lindström, M., Nystedt, P. (2003). Investments in social capital - Implications of social interactions for the production of health. Social science medicine (1982), 56, 2379-2390. doi:10.1016/S0277-9536(02)00242-3
Bond, R. (2020). Social network determinants of screen time among adolescents. The Social Science Journal, 1-16. doi:10.1016/j.soscij.2019.08.009
Bonnie, R. J., Stroud, C., Breiner, H., Committee on Improving the Health, S., National Research Council. (2015). Young adults in the 21st century. In Investing in the Health and Well-Being of Young Adults. National Academies Press (US).
Bucksch, J., Kopcakova, J., Inchley, J., Troped, P. J., Sudeck, G., Sigmundova, D., . . . Hamrik, Z. (2019). Associations between perceived social and physical environmental variables and physical activity and screen time among adolescents in four European countries. Int J Public Health, 64(1), 83-94. doi:10.1007/s00038-018-1172-9
Bucksch, J., Sigmundova, D., Hamrik, Z., Troped, P. J., Melkevik, O., Ahluwalia, N., . . . Inchley, J. (2016). International Trends in Adolescent Screen-Time Behaviors From 2002 to 2010. Journal of Adolescent Health, 58(4), 417-425. doi:https://doi.org/10.1016/j.jadohealth.2015.11.014
Busschaert, C., Cardon, G., Van Cauwenberg, J., Maes, L., Van Damme, J., Hublet, A., . . . De Cocker, K. (2015). Tracking and predictors of screen time from early adolescence to early adulthood: a 10-year follow-up study. J Adolesc Health, 56(4), 440-448. doi:10.1016/j.jadohealth.2014.11.016
Cabanas-Sánchez, V., García-Cervantes, L., Esteban-Gonzalo, L., Girela-Rejón, M. J., Castro-Piñero, J., Veiga, Ó. L. (2020). Social correlates of sedentary behavior in young people: The UP DOWN study. Journal of Sport and Health Science, 9(2), 189-196. doi:https://doi.org/10.1016/j.jshs.2019.03.005
Carrillo-Álvarez, E., Kawachi, I., Riera-Romaní, J. (2019). Neighbourhood social capital and obesity: a systematic review of the literature. 20(1), 119-141. doi:https://doi.org/10.1111/obr.12760
Carson, V., Janssen, I. (2012). Neighborhood disorder and screen time among 10-16 year old Canadian youth: a cross-sectional study. Int J Behav Nutr Phys Act, 9, 66. doi:10.1186/1479-5868-9-66
Castro, O., Bennie, J., Vergeer, I., Bosselut, G., Biddle, S. (2018). Correlates of sedentary behaviour in university students: A systematic review. Preventive medicine, 116, 194–202. https://doi.org/10.1016/j.ypmed.2018.09.01
Castro, O., Bennie, J., Vergeer, I., Bosselut, G., Biddle, S. J. H. (2020). How Sedentary Are University Students? A Systematic Review and Meta-Analysis. Prev Sci, 21(3), 332-343. doi:10.1007/s11121-020-01093-8
Chen, C.-Y., Wu, C.-C., Chang, H.-Y., Yen, L.-L. (2014). The effects of social structure and social capital on changes in smoking status from 8th to 9th grade: Results of the Child and Adolescent Behaviors in Long-term Evolution (CABLE) study. Preventive medicine, 62, 148-154. doi:https://doi.org/10.1016/j.ypmed.2013.11.003
Chen, P., Jacobson, K. C. (2012). Developmental Trajectories of Substance Use From Early Adolescence to Young Adulthood: Gender and Racial/Ethnic Differences. Journal of Adolescent Health, 50(2), 154-163. doi:https://doi.org/10.1016/j.jadohealth.2011.05.013
Chuang, Y.-C., Chuang, K.-Y. (2008). Gender differences in relationships between social capital and individual smoking and drinking behavior in Taiwan. Social Science Medicine, 67(8), 1321-1330. doi:https://doi.org/10.1016/j.socscimed.2008.06.033
Cohen, D. A., Han, B., Kraus, L., Young, D. R. (2019). The trajectory of patterns of light and sedentary physical activity among females, ages 14-23. PLoS One, 14(11), e0223737. doi:10.1371/journal.pone.0223737
Colarossi, L. G. (2001). Adolescent gender differences in social support: Structure, function, and provider type. Social Work Research, 25(4), 233-241. doi:10.1093/swr/25.4.233 %J Social Work Research
Coleman, J. S. (1990). Foundations of social theory. Cambridge(Mass:Belknap Press of Harvard University Press.).
da Silva, B. G. C., Menezes, A. M. B., Wehrmeister, F. C., Barros, F. C., Pratt, M. (2017). Screen-based sedentary behavior during adolescence and pulmonary function in a birth cohort. The international journal of behavioral nutrition and physical activity, 14(1), 82. doi:10.1186/s12966-017-0536-5
de Lucena, J. M., Cheng, L. A., Cavalcante, T. L., da Silva, V. A., de Farias Júnior, J. C. (2015). [Prevalence of excessive screen time and associated factors in adolescents]. Rev Paul Pediatr, 33(4), 407-414. doi:10.1016/j.rpped.2015.04.001
Delucchi, K. L., Matzger, H., Weisner, C. (2004). Dependent and problem drinking over 5 years: a latent class growth analysis. Drug Alcohol Depend, 74(3), 235-244. doi:10.1016/j.drugalcdep.2003.12.014
Dias, P. J., Domingos, I. P., Ferreira, M. G., Muraro, A. P., Sichieri, R., Gonçalves-Silva, R. M. (2014). Prevalence and factors associated with sedentary behavior in adolescents. Rev Saude Publica, 48(2), 266-274. doi:10.1590/s0034-8910.2014048004635
Doggett, A., Qian, W., Godin, K., De Groh, M., Leatherdale, S. T. (2019). Examining the association between exposure to various screen time sedentary behaviours and cannabis use among youth in the COMPASS study. SSM - Population Health, 9, 100487. doi:https://doi.org/10.1016/j.ssmph.2019.100487
Ehsan, A., Klaas, H. S., Bastianen, A., Spini, D. (2019). Social capital and health: A systematic review of systematic reviews. SSM - Population Health, 8, 100425. doi:https://doi.org/10.1016/j.ssmph.2019.100425
Emmerik, I. H. (2006). Gender differences in the creation of different types of social capital: A multilevel study. Social Networks, 28, 24-37. doi:10.1016/j.socnet.2005.04.002
Enders, C. K. (2010). Applied missing data analysis. New York, NY, US: Guilford Press.
Feng, Q., Zhang, Q. L., Du, Y., Ye, Y. L., He, Q. Q. (2014). Associations of physical activity, screen time with depression, anxiety and sleep quality among Chinese college freshmen. PLoS One, 9(6), e100914. doi:10.1371/journal.pone.0100914
Fountaine, C., Liguori, G., Mozumdar, A., Schuna, J. (2011). Physical Activity and Screen Time Sedentary Behaviors in College Students. International Journal of Exercise Science, 4, 3.
Fukuyama, F. (2000). Social Capital and Civil Society. IMF Working Papers, 00. doi:10.5089/9781451849585.001
Furuta, M., Ekuni, D., Takao, S., Suzuki, E., Morita, M., Kawachi, I. (2012). Social capital and self-rated oral health among young people. Community dentistry and oral epidemiology, 40(2), 97-104. doi:10.1111/j.1600-0528.2011.00642.x
Ge, Y., Xin, S., Luan, D., Zou, Z., Bai, X., Liu, M., Gao, Q. (2020). Independent and combined associations between screen time and physical activity and perceived stress among college students. Addictive Behaviors, 103, 106224. doi:https://doi.org/10.1016/j.addbeh.2019.106224
Gordon-Larsen, P., Nelson, M. C., Popkin, B. M. (2004). Longitudinal physical activity and sedentary behavior trends: adolescence to adulthood. American journal of preventive medicine, 27(4), 277-283. doi:10.1016/j.amepre.2004.07.006
Hale, L., Guan, S. (2015). Screen time and sleep among school-aged children and adolescents: a systematic literature review. Sleep medicine reviews, 21, 50-58. doi:10.1016/j.smrv.2014.07.007
Hanifan, L. J. (1916). The Rural School Community Center. The Annals of the American Academy of Political and Social Science, 67, 130-138.
Harpham, T., Grant, E., Thomas, E. (2002). Measuring social capital within health surveys: key issues. Health policy and planning, 17(1), 106-111. doi:10.1093/heapol/17.1.106
Herman, K. M., Hopman, W. M., Sabiston, C. M. (2015). Physical activity, screen time and self-rated health and mental health in Canadian adolescents. Preventive medicine, 73, 112-116. doi:https://doi.org/10.1016/j.ypmed.2015.01.030
Hoare, E., Milton, K., Foster, C., Allender, S. (2016). The associations between sedentary behaviour and mental health among adolescents: a systematic review. The international journal of behavioral nutrition and physical activity, 13(1), 108. https://doi.org/10.1186/s12966-016-0432-4
Holahan, C. J., Valentiner, D. P., Moos, R. H. (1994). Parental support and psychological adjustment during the transition to young adulthood in a college sample. Journal of Family Psychology, 8(2), 215-223. doi:10.1037/0893-3200.8.2.215
Hooghe, M., Oser, J. (2015). Internet, television and social capital: the effect of 'screen time' on social capital. Information Communication Society, 18(10), 1175-1199. doi:10.1080/1369118x.2015.1022568
Ichiro, K., Lisa, F. B. (2015). Social Capital, Social Cohesion, and Health Social Epidemiology. In. Oxford, UK: Oxford University Press.
Jones, B. L., Nagin, D. S., Roeder, K. (2001). A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories. Sociological Methods Research, 29(3), 374-393. doi:10.1177/0049124101029003005
Katapally, T. R., Thorisdottir, A. S., Laxer, R., Leatherdale, S. T. (2018). The association of school connectedness and bullying involvement with multiple screen-time behaviours among youth in two Canadian provinces: a COMPASS study. Health Promot Chronic Dis Prev Can, 38(10), 368-379. doi:10.24095/hpcdp.38.10.03
Kawachi, I., Berkman, L. (2000). Social cohesion, social capital, and health. Social epidemiology, 174(7).
Kawachi, I., Berkman, L. F. (2001). Social ties and mental health. J Urban Health, 78(3), 458-467. doi:10.1093/jurban/78.3.458
Kawachi, I., Takao, S., Subramanian, S. V. (2013). Global perspectives on social capital and health: Springer.
Kwon, S., Janz, K. F., Letuchy, E. M., Burns, T. L., Levy, S. M. (2015). Developmental Trajectories of Physical Activity, Sports, and Television Viewing During Childhood to Young Adulthood: Iowa Bone Development Study. JAMA Pediatrics, 169(7), 666-672. doi:10.1001/jamapediatrics.2015.0327 %J JAMA Pediatrics
Langøy, A., Smith, O. R. F., Wold, B., Samdal, O., Haug, E. M. (2019). Associations between family structure and young people’s physical activity and screen time behaviors. BMC Public Health, 19(1), 433. doi:10.1186/s12889-019-6740-2
Leatherdale, S. T., Ahmed, R. (2011). Screen-based sedentary behaviours among a nationally representative sample of youth: are Canadian kids couch potatoes? Chronic diseases and injuries in Canada, 31(4), 141-146.
LeBlanc, A. G., Broyles, S. T., Chaput, J.-P., Leduc, G., Boyer, C., Borghese, M. M., Tremblay, M. S. (2015). Correlates of objectively measured sedentary time and self-reported screen time in Canadian children. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 38. doi:10.1186/s12966-015-0197-1
Lisha, N. E., Sussman, S. (2010). Relationship of high school and college sports participation with alcohol, tobacco, and illicit drug use: A review. Addictive Behaviors, 35(5), 399-407. doi:https://doi.org/10.1016/j.addbeh.2009.12.032
Lin, N. (2001). Social Capital. In Social Capital: A Theory of Social Structure and Action (Structural Analysis in the Social Sciences, pp. 19-28). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511815447.003
Madhav, K. C., Sherchand, S. P., Sherchan, S. (2017). Association between screen time and depression among US adults. Prev Med Rep, 8, 67-71. doi:10.1016/j.pmedr.2017.08.005
Matar Boumosleh, J., Jaalouk, D. (2017). Depression, anxiety, and smartphone addiction in university students- A cross sectional study. PloS one, 12(8), e0182239. https://doi.org/10.1371/journal.pone.0182239
Matin, N., Kelishadi, R., Heshmat, R., Motamed-Gorji, N., Djalalinia, S., Motlagh, M. E., . . . Qorbani, M. (2017). Joint association of screen time and physical activity on self-rated health and life satisfaction in children and adolescents: the CASPIAN-IV study. International Health, 9(1), 58-68. doi:10.1093/inthealth/ihw044 %J International Health
McVeigh, J., Smith, A., Howie, E., Straker, L. (2016). Trajectories of Television Watching from Childhood to Early Adulthood and Their Association with Body Composition and Mental Health Outcomes in Young Adults. PloS one, 11(4), e0152879.
Mielke, G. I., Brown, W. J., Nunes, B. P., Silva, I. C. M., Hallal, P. C. (2017). Socioeconomic Correlates of Sedentary Behavior in Adolescents: Systematic Review and Meta-Analysis. Sports Med, 47(1), 61-75. doi:10.1007/s40279-016-0555-4
Mieziene, B., Emeljanovas, A., Novak, D., Kawachi, I. (2019). The Relationship between Social Capital within Its Different Contexts and Adherence to a Mediterranean Diet Among Lithuanian Adolescents. Nutrients, 11(6), 1332. doi:10.3390/nu11061332
Montagni, I., Guichard, E., Carpenet, C., Tzourio, C., Kurth, T. (2016). Screen time exposure and reporting of headaches in young adults: A cross-sectional study. Cephalalgia, 36(11), 1020-1027. doi:10.1177/0333102415620286
Montagni, I., Guichard, E., Kurth, T. (2016). Association of screen time with self-perceived attention problems and hyperactivity levels in French students: a cross-sectional study. BMJ Open, 6(2), e009089. doi:10.1136/bmjopen-2015-009089
Moore, S., Kawachi, I. (2017). Twenty years of social capital and health research: a glossary. Journal of epidemiology and community health, 71(5), 513-517. doi:10.1136/jech-2016-208313
Musaiger, A. O., Awadhalla, M. S., Al-Mannai, M., AlSawad, M., Asokan, G. V. (2017). Dietary habits and sedentary behaviors among health science university students in Bahrain. International journal of adolescent medicine and health, 29(2), /j/ijamh.2017.2029.issue-2012/ijamh-2015-0038/ijamh-2015-0038.xml. doi:10.1515/ijamh-2015-0038
Nagin, D. S. (2005). Group-Based Modeling of Development: Harvard University Press.
Nieuwenhuis, J. (2020). Neighborhood social capital and adolescents’ individual health development. Social Science Medicine, 265, 113417. doi:https://doi.org/10.1016/j.socscimed.2020.113417
Nishida, T., Tamura, H., Sakakibara, H. (2019). The association of smartphone use and depression in Japanese adolescents. Psychiatry Res, 273, 523-527. doi:10.1016/j.psychres.2019.01.074
Norris, P., Ronald, I. (2006). Gendering social capital: Bowling in women's leagues? Gender and Social Capital, 73-98.
Novak, D., Suzuki, E., Kawachi, I. (2015). Are family, neighbourhood and school social capital associated with higher self-rated health among Croatian high school students? A population-based study. BMJ Open, 5(6), e007184. doi:10.1136/bmjopen-2014-007184
O’Donoghue, G., Perchoux, C., Mensah, K. et al. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: a socio-ecological approach. BMC Public Health 16, 163 (2016). https://doi.org/10.1186/s12889-016-2841-3
Ohannessian, C. M. (2009). Media Use and Adolescent Psychological Adjustment: An Examination of Gender Differences. Journal of child and family studies, 18(5), 582-593. doi:10.1007/s10826-009-9261-2
Olds, T. S., Maher, C. A., Ridley, K., Kittel, D. M. (2010). Descriptive epidemiology of screen and non-screen sedentary time in adolescents: a cross sectional study. International Journal of Behavioral Nutrition and Physical Activity, 7(1), 92. doi:10.1186/1479-5868-7-92
Pagani, L. S., Japel, C., Vaillancourt, T., Côté, S., Tremblay, R. E. (2008). Links between life course trajectories of family dysfunction and anxiety during middle childhood. Journal of abnormal child psychology, 36(1), 41–53. https://doi.org/10.1007/s10802-007-9158-8
Paiva, P. C., de Paiva, H. N., de Oliveira Filho, P. M., Lamounier, J. A., Ferreira e Ferreira, E., Ferreira, R. C., Kawachi, I., Zarzar, P. M. (2014). Development and validation of a social capital questionnaire for adolescent students (SCQ-AS). PloS one, 9(8), e103785. https://doi.org/10.1371/journal.pone.0103785
Pan, Y.-C., Chiu, Y.-C., Lin, Y.-H. (2020). Systematic review and meta-analysis of epidemiology of internet addiction. Neuroscience Biobehavioral Reviews, 118, 612-622. doi:https://doi.org/10.1016/j.neubiorev.2020.08.013
Parcel, T. L., Dufur, M. J., Cornell Zito, R. (2010). Capital at Home and at School: A Review and Synthesis. Journal of Marriage and Family, 72(4), 828-846. doi:10.1111/j.1741-3737.2010.00733.x
Pate, R. R., Mitchell, J. A., Byun, W., Dowda, M. (2011). Sedentary behaviour in youth. Br J Sports Med, 45(11), 906-913. doi:10.1136/bjsports-2011-090192
Pinillos-Franco, S., Kawachi, I. (2018). The relationship between social capital and self-rated health: A gendered analysis of 17 European countries. Social Science Medicine, 219, 30-35. doi:https://doi.org/10.1016/j.socscimed.2018.10.010
Portes, A. (1998). Social Capital: Its Origins and Applications in Modern Sociology. Annual Review of Sociology, 24(1), 1-24. doi:10.1146/annurev.soc.24.1.1
Prado, C. V., Rech, C., Hino, A., Reis, R. (2017). Perception of neighborhood safety and screen time in adolescents from Curitiba, Brazil. 204, 688-701.
Prince, S. A., Gresty, K. M., Reed, J. L., Wright, E., Tremblay, M. S., Reid, R. D. (2014). Individual, social and physical environmental correlates of sedentary behaviours in adults: a systematic review protocol. Systematic reviews, 3, 120-120. doi:10.1186/2046-4053-3-120
Putnam, R. D., Leonardi, R., Nanetti, R. (1993). Making Democracy Work: Civic Traditions in Modern Italy. Princeton: Princeton University Press.
Ramsey Buchanan, L., Rooks-Peck, C. R., Finnie, R. K. C., Wethington, H. R., Jacob, V., Fulton, J. E., . . . Community Preventive Services Task, F. (2016). Reducing Recreational Sedentary Screen Time: A Community Guide Systematic Review. American journal of preventive medicine, 50(3), 402-415. doi:10.1016/j.amepre.2015.09.030
Richards, R., McGee, R., Williams, S. M., Welch, D., Hancox, R. J. (2010). Adolescent Screen Time and Attachment to Parents and Peers. Archives of Pediatrics Adolescent Medicine, 164(3), 258-262. doi:10.1001/archpediatrics.2009.280 %J Archives of Pediatrics Adolescent Medicine
Richmond, T. K., Milliren, C., Walls, C. E., Kawachi, I. (2014). School Social Capital and Body Mass Index in the National Longitudinal Study of Adolescent Health. 84(12), 759-768. doi:https://doi.org/10.1111/josh.12213
Riggs, N. R., Chou, C.-P., Li, C., Pentz, M. A. (2007). Adolescent to Emerging Adulthood Smoking Trajectories: When Do Smoking Trajectories Diverge, and Do They Predict Early Adulthood Nicotine Dependence? Nicotine Tobacco Research, 9(11), 1147-1154. doi:10.1080/14622200701648359
Roeder, K., Lynch, K. G., Nagin, D. S. (1999). Modeling Uncertainty in Latent Class Membership: A Case Study in Criminology. Journal of the American Statistical Association, 94(447), 766-776. doi:10.1080/01621459.1999.10474179
Rubin, D. B. (1976). Inference and Missing Data. Biometrika, 63(3), 581-592. doi:10.2307/2335739
Saunders, T. J., Vallance, J. K. (2017). Screen Time and Health Indicators Among Children and Youth: Current Evidence, Limitations and Future Directions. Applied health economics and health policy, 15(3), 323-331. doi:10.1007/s40258-016-0289-3
Schaan, C. W., Cureau, F. V., Sbaraini, M., Sparrenberger, K., Kohl Iii, H. W., Schaan, B. D. (2019). Prevalence of excessive screen time and TV viewing among Brazilian adolescents: a systematic review and meta-analysis. Jornal de pediatria, 95(2), 155-165. doi:10.1016/j.jped.2018.04.011
Simón-Montañes, L., Solana, A. A., García-Gonzalez, L., Catalán, A. A., Sevil-Serrano, J. J. E. J. o. H. M. (2019). “Hyperconnected” adolescents: sedentary screen time according to gender and type of day. 43, 49-66.
Society for Adolescent Health and Medicine (2017). Young Adult Health and Well-Being: A Position Statement of the Society for Adolescent Health and Medicine. The Journal of adolescent health : official publication of the Society for Adolescent Medicine, 60(6), 758–759. https://doi.org/10.1016/j.jadohealth.2017.03.021
Sousa, G. R. d., Silva, D. A. S. (2017). Sedentary behavior based on screen time: prevalence and associated sociodemographic factors in adolescents. Ciencia saude coletiva, 22(12), 4061-4072. doi:10.1590/1413-812320172212.00472016
Stiglic, N., Viner, R. M. (2019). Effects of screentime on the health and well-being of children and adolescents: a systematic review of reviews. BMJ Open, 9(1), e023191-e023191. doi:10.1136/bmjopen-2018-023191
Totland, T. H., Bjelland, M., Lien, N., Bergh, I. H., Gebremariam, M. K., Grydeland, M., . . . Andersen, L. F. (2013). Adolescents’ prospective screen time by gender and parental education, the mediation of parental influences. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 89. doi:10.1186/1479-5868-10-89
Trinh, M.-H., Sundaram, R., Robinson, S. L., Lin, T.-C., Bell, E. M., Ghassabian, A., Yeung, E. H. (2020). Association of Trajectory and Covariates of Children’s Screen Media Time. JAMA Pediatrics, 174(1), 71-78. doi:10.1001/jamapediatrics.2019.4488 %J JAMA Pediatrics
Twenge, J. M., Farley, E. (2020). Not all screen time is created equal: associations with mental health vary by activity and gender. Social Psychiatry and Psychiatric Epidemiology. doi:10.1007/s00127-020-01906-9
Villalonga-Olives, E., Kawachi, I. (2015). The measurement of social capital. Gaceta Sanitaria, 29(1), 62-64. doi:https://doi.org/10.1016/j.gaceta.2014.09.006
Villalonga-Olives, E., Kawachi, I. (2017). The dark side of social capital: A systematic review of the negative health effects of social capital. Social science medicine (1982), 194, 105-127. doi:10.1016/j.socscimed.2017.10.020
Virtanen, M., Ervasti, J., Oksanen, T., Kivimäki, M., Vahtera, J. (2013). Social Capital in Schools. In I. Kawachi, S. Takao, S. V. Subramanian (Eds.), Global Perspectives on Social Capital and Health (pp. 65-85). New York, NY: Springer New York.
Weidner, G. (1998). Gender gap in health decline in East Europe. Nature, 395(6705), 835-835. doi:10.1038/27522
Wen, M. (2017). Social Capital and Adolescent Substance Use: The Role of Family, School, and Neighborhood Contexts. J Res Adolesc, 27(2), 362-378. doi:10.1111/jora.12299
Werneck, A. O., Silva, D. R., Agostinete, R. R., Fernandes, R. A., Ronque, E. R. V., Oyeyemi, A. L., Cyrino, E. S. (2018). Relationship of Parental and Adolescents' Screen Time to Self-Rated Health: A Structural Equation Modeling. Health Educ Behav, 45(5), 764-771. doi:10.1177/1090198118757825
White, H. R., Labouvie, E. W., Papadaratsakis, V. (2005). Changes in Substance use during the Transition to Adulthood: A Comparison of College Students and Their Noncollege Age Peers. Journal of Drug Issues, 35(2), 281-306. doi:10.1177/002204260503500204
Xu, H., Wen, L. M., Rissel, C. (2015). Associations of parental influences with physical activity and screen time among young children: a systematic review. Journal of obesity, 2015, 546925-546925. doi:10.1155/2015/546925
Zarrett, N., Eccles, J. (2006). The passage to adulthood: challenges of late adolescence. New Dir Youth Dev(111), 13-28, 17. doi:10.1002/yd.179
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74471-
dc.description.abstract背景:隨著科技快速發展,人們投資在螢幕使用的時間也隨之攀升。國內外文獻已指出螢幕使用時間對健康會造成嚴重的危害,包括視力受損、降低身體活動時間、睡眠不充足、降低生活品質、憂慮、焦慮等等健康問題。然而過去研究對螢幕使用時間之探討多以兒童與青少年為主,忽略同為高風險族群的成年早期青年。同時,也缺乏針對社會因子的探討。其中「社會資本」為近年來被廣泛應用於健康介入的重要保護社會因子之一,其指一個人可以在不同環境之人際互動中獲得的資源,包括支持、信任、互惠、社會規範等,然而社會資本與螢幕使用時間的關係還未知。
目的:本研究利用處於成年早期的青年研究樣本,以長期追蹤的次級資料庫進行分析,依性別探討男性與女性成年早期螢幕使用時間的發展軌跡,並進一步分析研究樣本在青少年期的社會資本對其成年早期螢幕使用時間發展軌跡的影響。
方法:本研究利用「兒童與青少年行為之長期發展研究」(簡稱CABLE計畫) 於2001年就讀國小一年級之世代一資料,擷取自2010年至2016年間有完整追蹤資料的學生為研究樣本,共1,976名。本研究使用SAS 9.4統計軟體進行統計分析,並以群組化軌跡模式 (Group-based trajectory model) 及多元邏輯斯迴歸 (Multinomial logistic regression) 作為主要統計方法。
研究結果:整體而言,研究樣本的螢幕使用時間隨年齡增加呈現上升的趨勢;並且,女性平均螢幕使用時間高於男性。群組化軌跡模式分析結果顯示,男生研究樣本螢幕使用時間可分為三組軌跡類型:持續低組 (66.50%)、先降後升組 (17.05%) 以及先升後降組 (16.75%);女生研究樣本螢幕使用時間亦可分為三組軌跡類型:持續低組 (33.50%)、中等漸升組 (50.05%) 以及持續高組 (16.75%)。進一步探討社會資本與螢幕使用時間發展軌跡之關係發現,在男性方面以「持續低組」為參考組,家庭社會資本中的父母支持程度以及學校社會資本中的學校認同越高者,成為「先升後降組」的可能性較低 [勝算比:0.94 (95% 信賴區間: 0.89–0.99);勝算比:0.92 (95% 信賴區間: 0.84–0.99)];在女生方面,學校認同程度較高者,成為「中等漸升組」與「持續高組」的可能性較低 [勝算比:0.92 (95% 信賴區間: 0.85–0.99);勝算比:0.89 (95% 信賴區間: 0.81–0.99)]。
結論:本研究發現青少年期家庭社會資本中的父母支持程度以及學校社會資本的學校認同對成年早期螢幕使用時間發展軌跡有影響,且有性別差異。由此結果本研究提出以下建議:1. 加強關注成年早期螢幕使用時間; 2.輔導青少年家長增加對其子女適當的關注與支持;3. 強化學生對學校的認同感受;4. 成年螢幕使用時間介入方案宜提前至青少年時期並納入性別差異之考量。
zh_TW
dc.description.abstractBackground: Due to the increased accessibility of technology, individual’s screen time has greatly increased. Evidence has shown that screen time leaded to poor health outcomes, such as myopia, sleep problems, inadequate physical activities, lower quality of life, depression, and anxiety. However, most research has been conducted among children and adolescents, without understanding on developmental trajectories of screen time during young adulthood. “Social capital” has been recognized as an important determinant of health, yet the relationship between social capital and the developmental trajectories of screen time remains unknown.
Aims: The purposes of this study is to identify developmental trajectories of screen time during adulthood for males and females, representing as well as to examine whether social capital during adolescence influences distinguish trajectories.
Method: Data were drawn from the Child and Adolescent Behaviors in Long-term Evolution project. Participants who participated in the study from 2010 to 2016 were included in the analysis. Group-based trajectory modeling and multinomial logistic regression were conducted to test study hypotheses.
Results: The average screen time during adolescence from increased by age from 18 to 22 years old; overall, girls had higher amount of screen time than boys. Three distinct trajectories were identified for boys; persistent low group (66.50%), resurging group (17.05%), and escalating-then-desisting group (16.75%). Similarly, three trajectories were observed for girls: persistent low group (33.55%), moderate increasing group (50.05%) and persistent high group (16.75%). Gender differences were observed regarding the influences of social capital in adolescence on developmental trajectories of screen time during young adulthood. In boys, those with higher levels of parental support and school identity were less likely to being in the “escalating-then-desisting group” than being in the “persistent low group.” For girls, school identity was the only significant factor of developmental trajectories of screen time. Specifically, girls who had higher levels of school identity were less likely to being in the “moderate increasing group,” and “persistent high group” than being in the “persistent low group.”
Conclusion: In this study, we found that for boys, the developmental trajectories of screen time were associated with both parental support and school identity in adolescence. For girls, only school identity was significantly associated with the developmental trajectories of screen time. According to the findings, we suggested the followings: first, early prevention and intervention of excessive screen time in young adulthood should be initiated early from adolescences. In addition, parents are encouraged to give more attention and proper supports to teenagers; school is recommended to strengthen student’s school identity. Finally, gender differences should be taken into consideration in the study of social capital and screen time.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:37:41Z (GMT). No. of bitstreams: 1
U0001-1901202122521900.pdf: 1889424 bytes, checksum: 1ed2304897838db8d2d2caf29e92ace5 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 i
Abstract i
目錄 iii
圖目錄 v
表目錄 vi
第一章 諸論 7
第一節、 研究背景與動機 7
第二節、 研究目的 9
第三節、 研究重要性 10
第二章 文獻探討 11
第一節、 螢幕使用時間定義與內涵 11
第二節、 社會資本的定義與內涵 14
第三節、 社會資本與螢幕使用時間的關係 18
第四節、 影響成年早期螢幕時間的其他相關因素 19
第五節、 性別與螢幕使用時間、社會資本之關係 21
第六節、 發展軌跡之應用與分析 23
第三章 研究方法 27
第一節、 研究架構 27
第二節、 研究材料與對象 28
第三節、 研究變項之定義與測量 31
第四節、 資料分析 38
第四章 研究結果 40
第一節、 樣本基本特性 40
第二節、 研究樣本螢幕使用時間之分布 44
第三節、 研究樣本螢幕使用時間發展軌跡類型 46
第四節、 男生樣本社會資本與其螢幕使用時間發展軌跡之關係 52
第五節、 女生樣本社會資本與其螢幕使用發展軌跡之關係 59
第五章 討論 65
第一節、 成年早期螢幕使用時間發展軌跡之分布與其性別差異 66
第二節、 社會資本與螢幕使用時間發展軌跡之關係 69
第三節、 研究限制 73
第六章 結論與建議 75
第一節、 結論 75
第二節、 建議 77
第七章 參考資料 80
dc.language.isozh-TW
dc.title成人早期螢幕使用時間發展軌跡:青少年期社會資本的影響
zh_TW
dc.titleDevelopmental trajectories of screen time during young adulthood:
The influences of social capital in adolescence
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張弘潔(Hung-Chieh Chang),聶西平(Hsi-Ping Nieh)
dc.subject.keyword成年早期,螢幕使用時間,青少年,社會資本,長期追蹤研究,zh_TW
dc.subject.keywordYoung adulthood,Screen time,Adolescence,Social capital,Longitudinal study,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202100097
dc.rights.note有償授權
dc.date.accepted2021-01-25
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept健康行為與社區科學研究所zh_TW
顯示於系所單位:健康行為與社區科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1901202122521900.pdf
  目前未授權公開取用
1.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved