請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74468
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇柏青 | |
dc.contributor.author | Chih-Lin Hsu | en |
dc.contributor.author | 許智霖 | zh_TW |
dc.date.accessioned | 2021-06-17T08:37:30Z | - |
dc.date.available | 2022-08-18 | |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-08 | |
dc.identifier.citation | [1] S.-Y.Lien,S.-L.Shieh,Y.Huang,B.Su,Y.-L.Hsu,andH.-Y.Wei,“5Gnewradio: waveform, frame structure, multiple access, and initial access,” IEEE Communica- tions Magazine, vol. 55, pp. 64-71, June 2017.
[2] 3GPP, “Study on scenarios and requirements for next generation access technolo- gies,” Technical Report (TR) 38.913, V15.0.0, June 2018. [3] A. A. Zaidi, R. Baldemair, H. Tullberg, H. Bjorkegren, L. Sundstrom, J. Medbo, C. Kilinc, and I. D. Silva, “Waveform and numerology to support 5G services and requirements,” IEEE Communications Magazine, vol. 54, no. 11, pp. 90-98, Nov. 2016. [4] C. Sexton, Q. Bodinier, A. Farhang, N. Marchetti, F. Bader, and L. A. DaSilva, “Enabling asynchronous machine-type D2D communication using multiple wave- forms in 5G,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1307-1322, Apr. 2018. [5] T.Levanen,J.Pirskanen,K.Pajukoski,M.Renfors,andM.Valkama,“Transparent Tx and Rx waveform processing for 5G new radio mobile communications,” IEEE Wireless Communications, vol. 128-136, Feb. 2019. [6] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. T. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjan- ski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Communications Magazine, vol. 52, no.2, pp. 97-105, Feb. 2014. [7] C. Bockelmann, N. K. Pratas, G. Wunder, S. Saur, M. Navarro, D. Gregoratti, G. Vivier, E. D. Carvalho, Y. Ji, Č. Stefanović, P. Popovski, Q. Wang, M. Schell- mann, E. Kosmatos, P. Demestichas, M. Raceala-Motoc, P. Jung, S. Stanczak, and A. Dekorsy, “Towards massive connectivity support for scalable mMTC commu- nications in 5G networks,” IEEE Access, vol. 6, pp. 28969-28992, June 2018. [8] K.Yang,N.Yang,N.Ye,M.Jia,Z.Gao,andR.Fan,“Non-orthogonalmultipleac- cess: achieving sustainable future radio access,” IEEE Communications Magazine, vol. 57, pp. 116-121, Feb. 2019. [9] Y. Medjahdi, R. Zayani, H. Shaiek, and D. Roviras, “WOLA processing: a useful tool for windowed waveforms in 5G with relaxed synchronicity,” in Proc. IEEE International Conference on Communications (ICC) Workshops on the Main Trends in 5G Networks, pp. 393-398, May 2017. [10] R. Zayani, Y. Medjahdi, H. Shaiek, and D. Roviras, “WOLA-OFDM: a potential candidate for asynchronous 5G,” in Proc. IEEE GLOBECOM Workshop on 5G RAN Design, Dec. 2016. [11] L. Zhang, A. Ijaz, P. Xiao, M. M. Molu, and R. Tafazolli, “Filtered OFDM sys- tems, algorithms, and performance analysis for 5G and beyond,” IEEE Trans. on Communications, vol. 66, no. 3, pp. 1205-1218, Mar. 2018. [12] M.Yang,Y.Chen,andL.Du,“Interferenceanalysisandfilterparametersoptimiza- tion for uplink asynchronous F-OFDM systems,” IEEE Access, vol. 7, pp. 48356- 48370, Apr. 2019. [13] S. Wang, J. S. Thompson, and P. M. Grant, “Closed-form expressions for ICI/ISI in filtered OFDM systems for asynchronous 5G uplink,” IEEE Trans. on Commu- nications, vol. 65, no. 11, pp. 4886-4898, Nov. 2017. [14] H. Cho, Y. Yan, G.-K. Chang, and X. Ma, “Asynchronous multi-user uplink trans- missions for 5G with UFMC waveform,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), Mar. 2017. [15] X. Wang, T. Wild, and F. Schaich, “Filter optimization for carrier-frequency- and timing-offset in universal filtered multi-carrier systems,” in Proc. IEEE 81st Vehic- ular Technology Conference (VTC Spring), May 2015. [16] Y. Huang and B. Su, “Circularly pulse-shaped precoding for OFDM: a new wave- form and its optimization design for 5G New Radio,” IEEE Access, vol. 6, pp. 44129-44146, Aug. 2018. [17] Y. Huang, R. Yang, and B. Su, “Reducing cubic metric of circularly pulse-shaped OFDM signals through constellation shaping optimization with performance con- straints,” in Proc. IEEE 88th Vehicular Technology Conference (VTC) Fall, Aug. 2018. [18] Qualcomm Inc., “R1-162199: Waveform candidates,” in 3GPP TSG RAN WG1 Meeting #84bis, Busan, Korea, Apr. 11-15, 2016. [19] B.LimandY.-C.Ko,“OptimalreceivefilterforGFDMwithtimingandfrequency offsets in uplink multiuser systems,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2018. [20] B. Lim and Y.-C. Ko, “SIR analysis of OFDM and GFDM waveforms with timing offset, CFO, and phase noise,” IEEE Trans. on Wireless Communications, vol. 16, no. 10, pp. 6979-6990, Oct. 2017. [21] P. J. W. Melsa, R. C. Younce and C. E. Rohrs, “Impulse response shortening for discrete multitone transceivers,” IEEE Transactions on Communications, vol. 44, no. 12, pp. 1662-1672, Dec. 1996. [22] K. Van Acker, G. Leus, M. Moonen, O. van de Wiel and T. Pollet, “Per tone equal- ization for DMT receivers,” in Proc. of IEEE Global −40 Telecommun. Conf., vol. 5, pp. 2311-2315, 1999. [23] J. M. Cioffi and J. A. C. Bingham, ”A data-driven multitone echo canceller,” IEEE Transactions on Communications, vol. 42, no. 10, pp. 2853-2869, Oct. 1994. [24] D. Kim and G. L. Stuber, ”Residual ISI cancellation for OFDM with applications to HDTV broadcasting,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1590-1599, Oct. 1998. [25] K.W.CheongandJ.M.Cioffi,”PrecoderforDMTwithinsufficientcyclicprefix,” in Proc. of IEEE Int. Conf. Commun., vol. 1, pp. 339-343, June 1998. [26] M.deCourville,P.Duhamel,P.MadecandJ.Palicot,”BlindequalizationofOFDM systems based on the minimization of a quadratic criterion,” in Proc. of IEEE Int. Conf. Commun., vol. 3, pp. 1318-1322, June 1996. [27] P.Chen,B.SuandY.Huang,“MatrixCharacterizationforGFDM:LowComplex- ity MMSE Receivers and Optimal Filters,” IEEE Trans. on Signal Processing, vol. 65, no. 18, pp. 4940-4955, Sep. 2017. [28] U. Yunus, H. Lin and K. Yamashita, “A Novel Equalization Method for OFDM Systems without Guard Interval,” in Proc. IEEE GLOBECOM, 2010. [29] S. Trautmann and N. J. Fliege, “Perfect equalization for DMT systems without guard interval,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 5, pp. 987-996, June 2002. [30] K. Hayashi and H. Sakai, “Single Carrier Block Transmission Without Guard In- terval,” in Proc. IEEE 17th Int. Symp. Pers. Indoor Mobile Radio Commun., 2006. [31] N. Michailow, I. Gaspar, S. Krone, M. Lentmaier and G. Fettweis, “Generalized frequency division multiplexing: Analysis of an alternative multi-carrier technique for next generation cellular systems,” in Proc. Int. Symp. Wireless Commun. Syst. (ISWCS), Aug. 2012, pp. 171–175. [32] M. Matthé, L. L. Mendes and G. Fettweis, “Asynchronous multi-user uplink trans- mission with generalized frequency division multiplexing,” in Proc. IEEE Int. Conf. Commun. Workshop, Jun. 2015, pp. 2269-2275. [33] X.Zhang,M.Jia,L.Chen,J.MaandJ.Qiu,“Filtered-OFDM-EnablerforFlexible Waveform in the 5th Generation Cellular Networks,” in Proc. IEEE GLOBECOM Workshops, San Diego CA. USA. Dec. 2015. [34] J. Abdoli, M. Jia and J. Ma, “Filtered OFDM: A new waveform for future wireless systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun., Stockholm, Sweden, Jun. 2015, pp. 66–70. [35] Huawei and HiSilicon, “R1-165425: f-OFDM scheme and filter design,” in 3GPP TSG RAN WG1 Meeting #85, Nanjing, China, May 23-27, 2016. [36] E. Bala, J. Li and R. Yang, “Shaping Spectral Leakage: A Novel Low-Complexity Transceiver Architecture for Cognitive Radio,” IEEE Veh. Technol. Mag., vol. 8, no. 3, pp. 38-46, Sep. 2013. [37] Z. Luo, W. Ma, A. M. So, Y. Ye and S. Zhang, “Semidefinite Relaxation of Quadratic Optimization Problems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20-34, May 2010. [38] Y. Huang and D. P. Palomar, “Rank-Constrained Separable Semidefinite Program- ming With Applications to Optimal Beamforming,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 664-678, Feb. 2010. [39] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and P. Duhamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions” IEEE Trans. on Communications, vol. 50, no. 12, pp. 2136-2148, Dec. 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74468 | - |
dc.description.abstract | 實現非同步多用戶上行鏈路傳輸對於下一代無線網絡 (5G) 非常重要且必要,因為它應該要能夠滿足像是超可靠的低延遲通信 (URLLC) 和大規模機器類型通信 (mMTC) 這類的要求。在放寬的同步條件下,被廣泛應用於第四代行動通訊的正交分頻多工技術,由於它的高子頻帶外散射,所以容易影響到鄰近頻帶的用戶。5G候選波形之一的循環脈衝形預編碼正交分頻多工,透過預編碼矩陣的設計它可以同時擁有低子頻帶外散射以及低峰軍功率比的優點。本論文將會在異步多用戶上行鏈路循環脈衝形預編碼正交分頻多工的系統下,陳述頻域等化器的架構以及其最佳化問題的設計。模擬結果顯示了透過所提出來的頻域等化器,循環脈衝形預編碼正交分頻多工的錯誤率性能優於應用濾波器技術的正交分頻多工和應用窗口重疊並添加技術的正交分頻多工。因此循環脈衝形預編碼正交分頻多工系統將會成為第五代行動通訊非同步傳輸場景中最具發展潛力的技術之一。 | zh_TW |
dc.description.abstract | Enabling asynchronous multiuser uplink transmission is important and necessary for the next generation of wireless networks (5G) since it has to be able to meet the requirements for some scenarios, such as ultra-reliable low-latency communications (URLLC), and massive machine type communications (mMTC). In relaxed synchronization conditions, orthogonal frequency division multiplexing (OFDM) system, which is widely used in the fourth generation of the wireless network (4G), is easy to interfere adjacent users due to high out-of-subband emission (OSBE). Circularly pulse-shaped precoding orthogonal frequency division multiplexing (CPS-OFDM) system, a new waveform for 5G candidates, possesses the advantages of both low OSBE and low peak-to-average power ratio (PAPR) through precoding matrix design. In this thesis, the structure of frequency-domain equalizer (FDE) and its optimization problem design are proposed under the asynchronous multiuser uplink CPS-OFDM system. Simulation results show the BER performance of CPS-OFDM outperforms that of Filtered-OFDM (f-OFDM) and Weighted Overlap and Add based OFDM (WOLA-OFDM) by the proposed FDE. Thus, CPS-OFDM system will be one of the most developmental potentials in future 5G asynchronous transmission scenarios. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:37:30Z (GMT). No. of bitstreams: 1 ntu-108-R06942105-1.pdf: 1622841 bytes, checksum: bdb9a313dcca952733fcb320affd7a7a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 iii
Abstract v 1 Introduction 1 2 Circularly Pulse-Shaped Precoding for OFDM (CPS-OFDM) 5 2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 CPS-OFDM Multiuser Uplink Case with TO and CFO . . . . . 10 2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Frequency-domain Equalizer (FDE) Design and Performance Analysis 15 3.1 The Linearithmic Order Complexity Implementation . . . . . . 15 3.1.1 Proposed Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.2 The Linearithmic Order Complexity FDE Design and its Optimization Problem Design . . . . . . . . . . . . . . . . . . . 16 3.1.3 The Linearithmic Order Complexity FDE Design and its Optimization Problem Design with K Received Prototype Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.4 Complexity Analysis of FDE . . . . . . . . . . . . . . . . . . . . 21 3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Power Analysis Before FDE . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Power Analysis After FDE . . . . . . . . . . . . . . . . . . . . . . 26 4 Simulation Results 29 4.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 Mean Square Error (MSE) Analysis . . . . . . . . . . . . . . . 31 4.2.2 Multiuser Interference (MUI) Power Analysis . . . . . . 32 4.2.3 BER Comparison Between Different Waveforms . . . . 34 5 Conclusion and Future Work 39 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A Applying Filtering at Receiver for Filtered OFDM (f-OFDM) 41 A.1 Filtered-OFDM System Model . . . . . . . . . . . . . . . . . . . . . . . 41 B Applying Weighted Overlap and Add (WOLA) at Receiver for WOLA-OFDM 45 B.1 WOLA-OFDM System Model . . . . . . . . . . . . . . . . . . . . . . . . 45 Bibliography 51 | |
dc.language.iso | en | |
dc.title | 循環脈衝正交分頻多工實現未來5G之非同步多用戶上行鏈路傳輸 | zh_TW |
dc.title | Enabling Asynchronous Multiuser Uplink with Circularly Pulsed-Shaped OFDM for 5G and Beyond | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇炫榮,馮世邁 | |
dc.subject.keyword | 第五代行動通訊系統,新無線電,新波形,正交分頻多工,循環脈衝形預編碼器,低子頻帶外散射,低峰均功率比,凸最佳化,頻域等化器設計,非同步多用戶上行鏈路傳輸, | zh_TW |
dc.subject.keyword | 5G,New Radio (NR),new waveform,OFDM,circularly pulse-shaped (CPS) precoding,low out-of-subband emission (OSBE),low peak-to-average power ratio (PAPR),convex optimization,frequency-domain equalizer (FDE) design,asynchronous multiuser uplink transmission, | en |
dc.relation.page | 55 | |
dc.identifier.doi | 10.6342/NTU201902779 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。