請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74462
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃世建 | |
dc.contributor.author | Yu-Che Ling | en |
dc.contributor.author | 凌于哲 | zh_TW |
dc.date.accessioned | 2021-06-17T08:37:09Z | - |
dc.date.available | 2019-08-20 | |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-08 | |
dc.identifier.citation | [1] Dowell, R. K., Seible, F., and Wilson, E. L., (1998), “Pivot Hysteresis Model for Reinforced Concrete Members,” ACI Structural Journal, Vol. 95, No. 5, pp. 607-617.
[2] Sharma, A., Eligehausen, R. , and Reddy, G. R., (2013), “Pivot Hysteresis Model Parameters for Reinforced Concrete Columns, Joints, and Structures,” ACI Structural Journal, Vol. 110, No. 2, pp. 217-228. [3] Taylor, A.W. , Kuo, C., Wellenius, K., and Chung, D., (1997), “A Summary of Cyclic Lateral Load Tests on Rectangular Reinforced Concrete Columns,” NISTIR 5984, Building and Fire Research Laboratory, National Institute of Standards and Technology, United States Department of Commerce, Technology Administration, 97 pp. [4] Takeda, T., Sozen, M. A. and Nielsen, N. N., (1970), “Reinforced Concrete Response to Simulated Earthquakes,” Journal of Structural Divisions, ASCE, Vol. 96, No.12, pp. 2557-2573. [5] Bouc, R., (1971), “Forced Vibration of Mechanical Systems with Hysteresis,' Proceedings of the Fourth Conference on Nonlinear Oscillation. Prague, Czechoslovakia. p. 315. [6] Wen, Y. K. (1976), 'Method for Random Vibration of Hysteretic Systems '. Journal of Engineering Mechanics, ASCE, Vol. 102, No. 2, pp. 249-263. [7] Kirkpatrick, S., Gelatt Jr, C. D.,Vecchi, M. P. (1983), 'Optimization by Simulated Annealing'. Science, Vol. 220, No. 4598, pp. 671–680. [8] Baber, T. T., and Wen. Y. K.. (1981), “Random Vibrations of Hysteretic Degrading Systems,” Journal of Engineering Mechanics, ASCE, Vol. 107, No. 6, pp. 1069–1089. [9] Baber , T. T., and Noori , M.N. (1986), ” Modeling general hysteresis behaviour and random vibration applications,” Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 108, No. 4, pp. 411–420. [10] Gill, W. D., Park, R., and Priestley, M. J. N., (1979), 'Ductility of Rectangular Reinforced Concrete Columns With Axial Load,' Report 79-1, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 136 pp. [11] Ohno, T., and Nishioka, T., (1984), 'An Experimental Study on Energy Absorption Capacity of Columns in Reinforced Concrete Structures,' Proceedings of the JSCE, Structural Engineering/Earthquake Engineering, Vol. 1, No 2., pp. 137-147. [12] Ma , F., Zhang, H., Bockstedte, A., Foliente, G. C., and Paevere, P. (2004), “Parameter Analysis of the Differential Model of Hysteresis,” Journal of applied mechanics, ASME, Vol. 71, No. 3, pp. 342–349. [13] Sengupta, P., and Li, B., (2014), “Hysteresis Behavior of Reinforced Concrete Walls,” Journal of Structural Engineering, ASCE, Vol. 140, No. 7, pp. 1-18. [14] 中國土木水利工程學會 (2011),「混凝土工程設計規範與解說」,土木401-100版 [15] ASCE/SEI 41-13, (2014), 'Seismic Evaluation and Retrofit of Existing Buildings (41-13),' American Society of Civil Engineers (ASCE), Reston, VA, 518 pp. [16] Lynn, A., Moehle, J., Mahin, S., and Holmes, W. (1996). “Seismic Evaluation of Existing Reinforced Concrete Columns.” Earthq. Spectra, Vol. 12, No. 4, pp. 715–739. [17] Matchulat, L. (2009), “Mitigation of Collapse Risk in Vulnerable Concrete Buildings.” M.S. thesis, Univ. of Kansas, Lawrence, KS. [18] Woods, C. (2010), “Displacement Demand Effects in Vulnerable Reinforced Concrete Columns.” M.S. thesis, Univ. of Kansas, Lawrence, KS. [19] Henkhaus, K., Pujol, S., and Ramirez, J., (2013), 'Axial Failure of Reinforced Concrete Columns Damaged by Shear Reversals,' Journal of Structural Engineering, ASCE, Vol. 139, No. 9, pp. 1172-1180. [20] Li, Y. A., Huang, Y. T., and Hwang, S. J., (2014), “Seismic Response of Reinforced Concrete Short Columns Failed in Shear,” ACI Structural Journal, Vol. 111, No. 4, pp. 945-954. [21] Li, Y. A., Weng, P.W., and Hwang, S. J., (2019), “Seismic Performance of RC Intermediate Short Columns Failed in Shear,” ACI Structural Journal, Vol. 116, No. 3, pp. 195-206. [22] ACI Committee 318, (2014), “Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 519 pp. [23] Hwang, S. J., Tsai, R. J., Lam, W. K., and Moehle, J. P., (2017), 'Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions,' ACI Structural Journal, Vol. 114, No. 5, pp. 1239-1248. [24] Hwang, S. J., and Lee, H. J., (2002) “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, V. 128, No. 12, pp. 1519-1526. [25] Paulay, T., and Priestley, M. J. N., (1992), “Seismic Design of Reinforced Concrete and Masonry Buildings”, John Wiley & Sons, Inc., New York, 744 pp. [26] MacGregor, J. G., (1997), “Reinforced Concrete: Mechanics and Design. 3rd Edition,” Englewood Cliffs, NJ: Prentice Hall Inc., 939 pp. [27] Thürlimann, B., (1979), “Shear Strength of Reinforced and Prestressed Concrete-CEB Approach,” ACI Special Publication, Vol. SP 59, No.6, pp. 93-116. [28] 國家地震工程研究中心 (2018),「臺灣結構耐震評估側推分析法 (TEASPA V3.1)」,NCREE-2018-015. [29] Ang, B. G., Priestley, M.J.N., and Park, R., (1981), 'Ductility of Reinforced Bridge Piers Under Seismic Loading,' Report 81-3, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, February 1981, 109 pp. [30] Soesianawati, M.T., Park, R, and Priestley, M.J.N., (1986), 'Limited Ductility Design of Reinforced Concrete Columns,' Report 86-10, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 208 pp. [31] Zahn, F.A., Park, R, and Priestley, M.J.N., (1986), 'Design of Reinforced Bridge Columns for Strength and Ductility,' Report 86-7, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 330 pp. [32] Watson, Soesianawati, and Park, R., (1989), 'Design of Reinforced Concrete Frames of Limited Ductility,' Report 89-4, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 232 pp. [33] Tanaka, H., and Park, R., (1990), 'Effect of Lateral Confining Reinforcement on the Ductile Behavior of Reinforced Concrete Columns,' Report 90-2, Department of Civil Engineering, University of Canterbury, 458 pp. [34] Park, R., and Paulay, T., (1990), 'Use of Interlocking Spirals for Transverse Reinforcement in Bridge Columns.' Strength and Ductility of Concrete Substructures of Bridges, RRU (Road Research Unit) Bulletin 84, Vol. 1, pp. 77-92. [35] Arakawa, T., Arai, Y., Egashira, K., and Fujita, Y., (1982), 'Effects of the Rate of Cyclic Loading on the Load-Carrying Capacity and Inelastic Behavior of Reinforced Concrete Columns,' Transactions of the Japan Concrete Institute, Vol. 4, 198 pp. [36] Nagasaka, T., (1982), 'Effectiveness of Steel Fiber as Web Reinforcement in Reinforced Concrete Columns,' Transactions of the Japan Concrete Institute, Vol. 4, pp. 493-500. [37] Ohue, M., Morimoto, H., Fujii, S., and Morita, S., (1985), 'The Behavior of R.C. Short Columns Failing in Splitting Bond-Shear Under Dynamic Lateral Loading,' Transactions of the Japan Concrete Institute, Vol. 7, pp. 293-300. [38] Zhou, X., Higashi, Y., Jiang, W., and Shimizu, Y., (1985), 'Behavior of Reinforced Concrete Column Under High Axial Load,' Transactions of the Japan Concrete Institute, Vol. 7, pp. 385-392. [39] Imai, H., and Yamamoto, Y., (1986), 'A Study on Causes of Earthquake Damage of Izumi High School Due to Miyagi-Ken-Oki Earthquake in 1978,' Transactions of the Japan Concrete Institute, Vol. 8, pp. 405-418. [40] Zhou, X., Satoh, T., Jiang, W., Ono, A., and Shimizu, Y., (1987), 'Behavior of Reinforced Concrete Short Column Under High Axial Load,' Transactions of the Japan Concrete Institute, Vol. 9, pp. 541-548. [41] Kanda, M., Shirai, N., Adachi, H., and Sato, T., (1988), 'Analytical Study on Elasto-Plastic Hysteretic Behaviors of Reinforced Concrete Members,' Transactions of the Japan Concrete Institute, Vol.10, pp. 257-264. [42] Arakawa, T., Arai, Y., Mizoguchi, M., and Yoshida, M., (1989), 'Shear Resisting Behavior of Short Reinforced Concrete Columns Under Biaxial Bending-Shear,' Transactions of the Japan Concrete Institute, Vol. 11, pp. 317-324. [43] Muguruma, H., Watanabe, F., and Komuro, T., (1989), 'Applicability of High Strength Concrete to Reinforced Concrete Ductile Column,' Transactions of the Japan Concrete Institute, Vol. 11, pp. 309-316. [44] Ono, A., Shirai, N., Adachi, H., and Sakamaki, Y., (1989), 'Elasto-Plastic Behavior of Reinforced Concrete Column With Fluctuating Axial Force,' Transactions of the Japan Concrete Institute, Vol. 11, pp. 239-246. [45] Sakai, Y., Hibi, J., Otani, S., and Aoyama, H., (1990), 'Experimental Study on Flexural Behavior of Reinforced Concrete Columns Using High-Strength Concrete,' Transactions of the Japan Concrete Institute, Vol. 12, pp. 323-330. [46] Amitsu, S., Shirai, N., Adachi, H., and Ono, Arata, (1991), 'Deformation of Reinforced Concrete Column with High or Fluctuating Axial Force,' Transactions of the Japan Concrete Institute, Vol. 13, pp. 355-362. [47] Wight, J.K., and Sozen, M.A., (1973), 'Shear Strength Decay in Reinforced Concrete Columns Subjected to Large Deflection Reversals,' Structural Research Series No. 403, Civil Engineering Studies, University of Illinois, Urbana-Champaign, Ill., 290 pp. [48] Atalay, M.B., and Penzien, J., (1975), 'The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force,' Report No. EERC 75-19, University of California, Berkeley, 226 pp. [49] Umehara, H., and Jirsa, J.O., (1982), 'Shear Strength and Deterioration of Short Reinforced Concrete Columns Under Cyclic Deformations,' PMFSEL Report No. 82-3, Department of Civil Engineering, University of Texas at Austin, Austin Texas, 256 pp. [50] Bett, B.J., Klingner, R.E., and Jirsa, J.O., (1985), 'Behavior of Strengthened and Repaired Reinforced Concrete Columns Under Cyclic Deformations,' PMFSEL Report No. 85-3 Department of Civil Engineering, University of Texas at Austin, Austin, Texas, 86 pp. [51] Azizinamini, A., Johal, L.S., Hanson, N.W., Musser, D.W., and Corley, W.G., (1988), 'Effects of Transverse Reinforcement on Seismic Performance of Columns - A Partial Parametric Investigation,' Project No. CR-9617, Construction Technology Laboratories, Skokie, illinois, 412 pp. [52] Saatcioglu, M., and Ozcebe, G., (1989), 'Response of Reinforced Concrete Columns to Simulated Seismic Loading,' American Concrete Institute, ACI Structural Journal, pp. 3-12. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74462 | - |
dc.description.abstract | 根據建築物耐震設計規範之要求,中高樓進行耐震評估時需使用非線性歷時分析,其須確切反應構材之降伏強度、破壞機制及遲滯迴圈等非線性行為。柱作為關鍵豎向構材,其非線性遲滯行為之預測極為重要。
本研究使用Pivot遲滯模型,以遲滯迴圈消能面積作為模型參數最佳化之依據,針對蒐集之柱反覆側推實驗進行擬合。透過模擬退火演算法、迴歸分析、數值檢定等方法,定義Pivot模型參數與柱構件之軸壓比、撓曲鋼筋比、剪力鋼筋比、長高比之關係。本文建議公式可具體反應柱構材在不同破壞模式下之卸載與束縮等遲滯行為。 | zh_TW |
dc.description.abstract | Accoding to seismic design code of buildings, non-linear time history analysis is required for seismic assessment of mid-to-high-rise buildings. The analysis must accurately reflect structural members’ non-linear behaviors such as yielding strength, failure mechanism and hysteretic behavior. Columns as the major structural members in the lateral load-resisting systems. Hence, the hysteresis behavior prediction of columns is extremely importance in seismic design.
In this study, a hysteretic model of columns and its model parameters’ formulas had been proposed based on the Pivot Hysteretic Model. A database of column specimens subject to cyclic loading has been collected from literature for the model optimization. The model optimization method was executed base on energy dissipation. Simulated annealing algorithm was used to calibrate the response with experimental results and to identify model parameters. Simultaneously, the relationship between the structural characteristics and model parameters was resolved by regression analysis, hypothesis testing and simulated annealing algorithm. The analytical results based on proposed model formulas can accurately reflect hysteretic behavior of columns such as unloading behavior and pinching effect in different failure mode. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:37:09Z (GMT). No. of bitstreams: 1 ntu-108-R06521209-1.pdf: 8354207 bytes, checksum: a794c88ec6a8ba08f34f4b6661bac308 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 iii
誌謝 iv 摘要 v ABSTRACT vi 目錄 vii 表目錄 xi 圖目錄 xii 第一章 緒論 1 1.1研究動機與目的 1 1.2研究內容與方法 2 第二章 文獻回顧 4 2.1 遲滯模型 4 2.1.1 Takeda遲滯模型[4] 4 2.1.2 Pivot 遲滯模型[1] 6 2.1.2.1主要架構 6 2.1.2.2 Dowell et. al. [1] 圓形橋柱遲滯模型參數α、β之建議 8 2.1.2.3 Sharma et. al. [2]矩形柱遲滯模型參數建議公式 8 2.1.3 Bouc-Wen遲滯模型 10 2.1.3.1 ND-BW 遲滯模型[5,6] 10 2.1.3.2 DD-BW遲滯模型[8] 11 2.1.3.3 Bouc–Wen–Baber–Noori (BWBN) 遲滯模型[9] 12 2.1.3.4 Sengupta and Li [13]剪力牆遲滯模型參數建議公式 12 2.2 國內外對開孔鋼筋混凝土柱之實驗文獻 14 2.2.1 鋼筋混凝土柱實驗篩選原則 14 2.2.2 Taylor et al. 反覆側推實驗資料庫[3] 15 2.2.3 Lynn et al.之剪力破壞柱系列實驗文獻[16,17,18,19] 16 2.2.4 Li et al.之實驗文獻 16 第三章 Pivot遲滯模型之擬合 17 3.1 模型擬合背景定義 17 3.1.1 柱破壞模式之分類 17 3.1.2 強度之計算 18 3.1.2.1 撓曲強度計算 18 3.1.2.2 開裂剪力(V_cr)之計算 18 3.1.2.3 標稱剪力(V_n)之計算 19 3.1.2.3.1 短柱標稱剪力(V_n)之計算 19 3.1.2.3.2 一般柱標稱剪力(V_n)之計算 20 3.1.3 側力位移曲線定義 22 3.1.4 Pivot 遲滯模型模型參數α之上限 23 3.2 Pivot遲滯模型模型參數α、β擬合最佳化方法 24 3.2.1 模型參數擬合最佳化之目標迴圈 24 3.2.2 模型參數擬合最佳化之流程 25 3.2.2.1 模型參數αexp、βexp消能範圍之界定 25 3.2.2.2 單一迴圈擬合偵測指標 25 3.2.2.2.1 單一迴圈擬合偵測指標α_indicator 25 3.2.2.1.2 單一迴圈擬合偵測指標β_indicator 26 3.2.2.3 單一實驗擬合偵測指標α_(indicator_wavg ) 、β_(indicator_wavg ) 27 3.2.3 模擬退火演算法 28 3.2.4 擬合結果 29 第四章 Pivot遲滯模型模型參數建議公式 30 4.1迴歸公式之建立 30 4.1.1 物理參數及建議公式線型方案之選定 30 4.1.2 方案一、方案二分析之結果比較 31 4.1.3 關鍵物理參數之選定及迴歸公式 31 4.2建議公式最佳化 32 4.2.1建議公式最佳化之流程 32 4.2.1.1迴歸公式之重組 32 4.2.1.2建議公式最佳化之目標函式 33 4.2.1.3建議公式最佳化之結果 33 4.3建議公式中物理參數物理意義之探討 34 4.3.1模型參數α建議公式中物理參數物理意義之探討 34 4.3.2模型參數β建議公式中物理參數物理意義之探討 36 4.3.2.1撓曲破壞柱模型參數β建議公式物理參數之物理意義 37 4.3.2.2剪力破壞柱模型參數β建議公式物理參數之物理意義 37 4.4 建議公式與Sharma et al. [2]建議公式擬合結果之比較 38 4.4.1卸載行為之擬合成效 38 4.4.2束縮效應之擬合成效 39 4.4.3整體擬合成效 39 第五章 結論與建議 41 5.1 結論 41 5.2 未來研究與建議 42 參考文獻 43 附錄 101 | |
dc.language.iso | zh-TW | |
dc.title | 鋼筋混凝土柱遲滯迴圈之模擬研究 | zh_TW |
dc.title | A Study on Hysteresis Modeling of Reinforced Concrete Columns | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張國鎮,歐昱辰 | |
dc.subject.keyword | 鋼筋混凝土柱,遲滯行為,Pivot模型,模擬退火法,束縮效應, | zh_TW |
dc.subject.keyword | reinforced concrete column,hysteretic behavior,Pivot model,simulated annealing,pinching effect, | en |
dc.relation.page | 118 | |
dc.identifier.doi | 10.6342/NTU201902722 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 8.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。