請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7445
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賽德利克(Cedric P. Legendre) | |
dc.contributor.author | Rong-Jun Xu | en |
dc.contributor.author | 徐榮均 | zh_TW |
dc.date.accessioned | 2021-05-19T17:43:49Z | - |
dc.date.available | 2021-08-18 | |
dc.date.available | 2021-05-19T17:43:49Z | - |
dc.date.copyright | 2018-08-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-16 | |
dc.identifier.citation | Aktug, B., Nocquet, J. M., Cingöz, A., Parsons, B., Erkan, Y., England, P., . . . Tekgül, A. (2009). Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block‐like behavior. Journal of Geophysical Research: Solid Earth (1978–2012), 114(B10). doi:10.1029/2008JB006000
Al-Lazki, A. I., Sandvol, E., Seber, D., Barazangi, M., Turkelli, N., & Mohamad, R. (2004). Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates. Geophysical Journal International, 158(3), 1024-1040. doi:10.1111/j.1365-246X.2004.02355.x Argus, D. F., Gordon, R. G., & DeMets, C. (2011). Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11). doi:10.1029/2011GC003751 Barka, A. A., & Kadinsky‐Cade, K. (1988). Strike‐slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7(3), 663-684. doi:10.1029/TC007i003p00663 Berk Biryol, C., Beck, S. L., Zandt, G., & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184(3), 1037-1057. doi:10.1111/j.1365-246X.2010.04910.x Bozkurt, E. (2001). Neotectonics of Turkey – a synthesis. Geodinamica Acta, 14(1-3), 3-30. doi:10.1080/09853111.2001.11432432 Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., & Ward, K. M. (2015). Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophysical Journal International, 202(1), 261-276. doi:10.1093/gji/ggv141 Deschamps, F., Lebedev, S., Meier, T., & Trampert, J. (2008). Azimuthal anisotropy of Rayleigh-wave phase velocities in the east-central United States. Geophysical Journal International, 173(3), 827-843. doi:10.1111/j.1365-246X.2008.03751.x Dziewonski, A. M., Chou, T. A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth (1978–2012), 86(B4), 2825-2852. doi:10.1029/JB086iB04p02825 Dziewonski, A. M., Hager, B. H., & O'Connell, R. J. (1977). Large‐scale heterogeneities in the lower mantle. Journal of Geophysical Research, 82(2), 239-255. doi:10.1029/JB082i002p00239 Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200-201, 1-9. doi:https://doi.org/10.1016/j.pepi.2012.04.002 Emre, Ö., Duman, T., Özalp, S., Elmaci, H., Olgun, Ş., & Şaroğlu, F. (2013). Active Fault Map of Turkey with an Explanatory Text. 1:1,250,000 Scale. Endrun, B., Lebedev, S., Meier, T., Tirel, C., & Friederich, W. (2011). Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nature Geoscience, 4, 203. doi:10.1038/ngeo1065 Faccenna, C., Bellier, O., Martinod, J., Piromallo, C., & Regard, V. (2006). Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters, 242(1), 85-97. doi:https://doi.org/10.1016/j.epsl.2005.11.046 Fichtner, A., Saygin, E., Taymaz, T., Cupillard, P., Capdeville, Y., & Trampert, J. (2013). The deep structure of the North Anatolian Fault Zone. Earth and Planetary Science Letters, 373, 109-117. doi:https://doi.org/10.1016/j.epsl.2013.04.027 Floyd, M. A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., . . . England, P. C. (2010). A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B10). doi:10.1029/2009JB007040 Funiciello, F., Moroni, M., Piromallo, C., Faccenna, C., Cenedese, A., & Bui, H. A. (2006). Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B3). doi:10.1029/2005JB003792 Glover, C. and Robertson, A.H.F. (1998). Role of extensional processes and uplift in the Plio-Quaternary sedimentary and tectonic evolution of the Aksu Basin, southwest Turkey. Journal of the Geological Society, London, 155, 365–368. Gögüs, O.H. and Pysklywec R.N. (2008). Mantle lithosphere delamination driving plateau uplift and synconvergent extension in eastern Anatolia. Geology, 36(9), 723-726. Gök, R., Pasyanos, M. E., & Zor, E. (2007). Lithospheric structure of the continent—continent collision zone: eastern Turkey. Geophysical Journal International, 169(3), 1079-1088. doi:10.1111/j.1365-246X.2006.03288.x Gök, R., Sandvol, E., Türkelli, N., Seber, D., & Barazangi, M. (2003). Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. Geophysical Research Letters, 30(24). doi:10.1029/2003GL018020 Keskin, M. (2003). Magma generation by slab steepening and breakoff beneath a subduction‐accretion complex: An alternative model for collision‐related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24). doi:10.1029/2003GL018019 Knopoff, L. (1972). Observation and inversion of surface-wave dispersion. Tectonophysics, 13(1), 497-519. doi:https://doi.org/10.1016/0040-1951(72)90035-2 Koçyiğit, A., & Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics, 284(3), 317-336. doi:https://doi.org/10.1016/S0040-1951(97)00176-5 Landisman, M., Dziewonski, A., & Satô, Y. (1969). Recent Improvements in the Analysis of Surface Wave Observations. Geophysical Journal of the Royal Astronomical Society, 17(4), 369-403. doi:10.1111/j.1365-246X.1969.tb00246.x Lebedev, S., Meier, T., & van der Hilst, R. D. (2006). Asthenospheric flow and origin of volcanism in the Baikal Rift area. Earth and Planetary Science Letters, 249(3), 415-424. doi:https://doi.org/10.1016/j.epsl.2006.07.007 Lebedev, S., & Van Der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophysical Journal International, 173(2), 505-518. doi:10.1111/j.1365-246X.2008.03721.x Legendre, C. P., Deschamps, F., Zhao, L., Lebedev, S., & Chen, Q. F. (2014). Anisotropic Rayleigh wave phase velocity maps of eastern China. Journal of Geophysical Research: Solid Earth, 119(6), 4802-4820. doi:10.1002/2013JB010781 Mainprice, D., Barruol, G., Ben Ismail, W. (2000). The seismic anisotropy of the Earth’s mantle: from single crystal to polycrystal. Earth’s Deep Interior. Mineral Physics and Tomography from the Atomic to the Global Scale. In: Geophysical Monograph, vol. 17. American Geophysical Union, Washington, DC, 237–264. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., . . . Veis, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth (1978–2012), 105(B3), 5695-5719. doi:10.1029/1999JB900351 Meier, T., Dietrich, K., Stöckhert, B., & Harjes, H. P. (2004). One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophysical Journal International, 156(1), 45-58. doi:10.1111/j.1365-246X.2004.02121.x Montagner, J. P., & Nataf, H. C. (1986). A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research: Solid Earth (1978–2012), 91(B1), 511-520. doi:10.1029/JB091iB01p00511 Montagner, J. P., & Tanimoto, T. (1991). Global upper mantle tomography of seismic velocities and anisotropies. Journal of Geophysical Research: Solid Earth (1978–2012), 96(B12), 20337-20351. doi:10.1029/91JB01890 Nicolas A., Christensen N. (1987). Formation of anisotropy in upper mantle peridotites – a review. in Composition, Structure, and Dynamics of the Lithosphere–Asthenosphere System, eds Fuchs A., Froideveaux C., American Geophysical Union, Washington, DC. doi: 10.1029/GD016p0111. Okay, A. I., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475. Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw., 8(1), 43-71. doi:10.1145/355984.355989 Paul, A., Karabulut, H., Mutlu, A. K., & Salaün, G. (2014). A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region. Earth and Planetary Science Letters, 389, 14-22. doi:https://doi.org/10.1016/j.epsl.2013.12.019 Pearce, J. A., Bender, J. F., De Long, S. E., Kidd, W. S. F., Low, P. J., Güner, Y., . . . Mitchell, J. G. (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1), 189-229. doi:https://doi.org/10.1016/0377-0273(90)90018-B Polat, G., Lebedev, S., Readman, P. W., O'Reilly, B. M., & Hauser, F. (2012). Anisotropic Rayleigh‐wave tomography of Ireland's crust: Implications for crustal accretion and evolution within the Caledonian Orogen. Geophysical Research Letters, 39(4). doi:10.1029/2012GL051014 Reilinger, R. E., McClusky, S. C., Oral, M. B., King, R. W., Toksoz, M. N., Barka, A. A., . . . Sanli, I. (1997). Global Positioning System measurements of present‐day crustal movements in the Arabia‐Africa‐Eurasia plate collision zone. Journal of Geophysical Research: Solid Earth (1978–2012), 102(B5), 9983-9999. doi:10.1029/96JB03736. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., . . . Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B5). doi:10.1029/2005JB004051 Sandvol, E., Turkelli, N., Zor, E., Gok, R., Bekler, T., Gurbuz, C., . . . Barazangi, M. (2003). Shear wave splitting in a young continent‐continent collision: An example from Eastern Turkey. Geophysical Research Letters, 30(24). doi:10.1029/2003GL017390 Sato, Y. (1955). Analysis of dispersed surface wave by means of Fourier transform (I). Bull. Earthq. Res. Inst., 33, 33-48. Satô, Y. (1960). Synthesis of dispersed surface waves by means of Fourier transform. Bulletin of the Seismological Society of America, 50(3), 417-426. Schwab, F., & Knopoff, L. (1970). Surface-wave dispersion computations. Bulletin of the Seismological Society of America, 60(2), 321-344. Sengor, A. M. C., GÖRÜR, N., & Şaroğlu, F. (1985). Strike–slip faulting and related basin formation in zones of tectonic escape; Turkey as a case study (Vol. 37). Şengör, A. M. C., Özeren, S., Genç, T., & Zor, E. (2003). East Anatolian high plateau as a mantle‐supported, north‐south shortened domal structure. Geophysical Research Letters, 30(24). doi:10.1029/2003GL017858 Sengör, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3), 181-241. doi:https://doi.org/10.1016/0040-1951(81)90275-4 Smith, M. L., & Dahlen, F. A. (1973). The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17), 3321-3333. doi:10.1029/JB078i017p03321 Tezel, T., Shibutani, T., & Kaypak, B. (2013). Crustal thickness of Turkey determined by receiver function. Journal of Asian Earth Sciences, 75, 36-45. doi:https://doi.org/10.1016/j.jseaes.2013.06.016 Trampert, J., & Woodhouse, J. H. (2003). Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s. Geophysical Journal International, 154(1), 154-165. doi:10.1046/j.1365-246X.2003.01952.x van Hinsbergen, D. J. J. (2010). A key extensional metamorphic complex reviewed and restored: The Menderes Massif of western Turkey. Earth-Science Reviews, 102(1), 60-76. doi:https://doi.org/10.1016/j.earscirev.2010.05.005 Wang, Z., & Dahlen, F. A. (1995). Spherical‐spline parameterization of three‐dimensional earth models. Geophysical Research Letters, 22(22), 3099-3102. doi:10.1029/95GL03080 Warren, L. M., Beck, S. L., Biryol, C. B., Zandt, G., Özacar, A. A., & Yang, Y. (2013). Crustal velocity structure of Central and Eastern Turkey from ambient noise tomography. Geophysical Journal International, 194(3), 1941-1954. doi:10.1093/gji/ggt210 Wortel, M. J. R., & Spakman, W. (2000). Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science, 290(5498), 1910-1917. doi:10.1126/science.290.5498.1910 Wüstefeld, A., Bokelmann, G., Barruol, G., & Montagner, J.-P. (2009). Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Physics of the Earth and Planetary Interiors, 176(3), 198-212. doi:https://doi.org/10.1016/j.pepi.2009.05.006 Yolsal-Çevikbilen, S. (2014). Seismic anisotropy along the Cyprean arc and northeast Mediterranean Sea inferred from shear wave splitting analysis. Physics of the Earth and Planetary Interiors, 233, 112-134. doi:https://doi.org/10.1016/j.pepi.2014.05.010 Zor, E., Sandvol, E., Gürbüz, C., Türkelli, N., Seber, D., & Barazangi, M. (2003). The crustal structure of the East Anatolian plateau (Turkey) from receiver functions. Geophysical Research Letters, 30(24). doi:10.1029/2003GL018192 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7445 | - |
dc.description.abstract | 安納托利亞位在地中海的最東側,其北部屬於阿爾卑斯-喜馬拉雅造山帶的一支。安納托利亞為高度地表變形的區域,其構造由阿拉伯板塊與歐亞板塊碰撞於安納托利亞東北邊以及希臘隱沒帶回退於安納托利亞西南邊主導。安納托利亞的地殼構造已經透過接收函數、數個噪訊分析以及地震層析成像有很好的了解。然而,安納托利亞的岩石圈構造還需要進一步的研究。另外,向西移動的安納托利亞到底是受「阿拉伯板塊與歐亞板塊碰撞」的推力還是受「希臘隱沒帶回退」的拉力作用的結果,是目前仍需釐清的問題。
本研究中,我們透過安納托利亞地區寬頻地震測站紀錄到的垂直分量雷利波來構建有很好約束的高解析度均向性與非均向性相速度圖。首先,利用52個近乎均勻分布的地震測站接收到的1868個來自全球的地震以雙站法量測沿280個地震測站對的雷利波頻散曲線(週期範圍20-300秒),然後我們將這些頻散曲線逆推得到高解析度的均向性與非均向性相速度圖。 我們的結果顯示在東安納托利亞高原有相對低速異常,與前人研究一致,這說明軟流圈上湧導致東安納托利亞由較熱的地幔支撐。前人提出希臘隱沒板塊持續往地幔延伸而整體隱沒系統往西南方回退。我們的雷利波非均向性量測結果也顯示安納托利亞東部的快方向為南北向而安納托利亞西部的快方向為東北西南向。我們的非均向性排列方式與GPS的量測很一致。阿拉伯板塊向北碰撞歐亞板塊導致安納托利亞板塊向西擠出,安納托利亞受到西邊的希臘隱沒帶回退帶動往西南方向移動。因此我們提出安納托利亞地體構造形變受到其下方地幔流動的牽引以及周圍區域特構造特性影響,如阿拉伯板塊與歐亞板塊沿著縫合帶(Bitlis-Zagros Suture Zone)碰撞與希臘隱沒系統回退。 | zh_TW |
dc.description.abstract | Anatolia is a highly deformed region. Its tectonics is dominated by the Arabia-Eurasia collision in the northeast and the Hellenic subduction rollback in the southwest. The Anatolian Plate is located in the easternmost Mediterranean and its northern part belongs to the Alpine-Himalayan orogenic belt. The crustal structure of the Anatolian region is already well known, with a number of receiver function analyses and several ambient noise as well as travel-time tomographic studies. However, the lithospheric structure of the Anatolian region has not been well resolved. An open question is whether the western extrusion of Anatolia is caused by the “push” resulting from the Arabia-Eurasia collision or by the “pull” from the rollback of the Hellenic subduction system.
In this study, we use vertical-component Rayleigh-waves recorded at broadband seismic stations in the Anatolia region to obtain well-constrained high‐resolution isotropic and azimuthally anisotropic phase-velocity maps. We investigate the variation of Rayleigh-wave phase velocities beneath Anatolia in a broad period range (20-300s) by inverting the fundamental-mode Rayleigh-wave dispersion curves measured by the two-station technique. Using 52 stations nearly evenly distributed in the region and 1868 global earthquakes, we measured Rayleigh-wave dispersion curves along 280 interstation paths in the Anatolia region. These dispersion curves are then inverted for high-resolution isotropic and azimuthally anisotropic phase-velocity maps at periods between 20 and 300 seconds. Our models show relatively slow velocity anomalies in the crust and upper mantle beneath the East Anatolian Plateau (EAP), consistent with previous researches, indicating that the EAP is supported by hot mantle due to the asthenosphere upwelling. Other Studies suggested that the downgoing Hellenic slab continues and the rollback of the subduction system is oriented in the southwestern direction. This is also in good agreement with our Rayleigh-wave anisotropy model with a N-S fast direction in eastern Anatolia and a NE-SW fast direction in western Anatolia. Theses anisotropic patterns are consistent with the GPS-derived velocity field showing a northward collision of Arabia with Eurasia, a westward extrusion of the Anatolian Plate, and a NE-SW trench-ward motion caused by the rollback of the Hellenic subduction system. Therefore, we suggest that the engine of Anatolian deformation is driven by the mantle flow underneath as well as tectonic effects from neighboring regions, such as the collision of Arabia with Eurasia along the Bitlis-Zagros Suture Zone and the rollback of the Hellenic subduction system. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:43:49Z (GMT). No. of bitstreams: 1 ntu-107-R04241302-1.pdf: 452782387 bytes, checksum: 64d1289ab73182e2cb700f55a54f984b (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III Content V List of Figures VII Chapter 1 – Introduction 1 1.1 Tectonic History of the Deformation in Anatolia 4 1.2 Tectonic Units within Anatolia 6 1.2.1 Geologic Terranes 6 1.2.2 North Anatolian Fault Zone (NAFZ) 7 1.2.3 East Anatolian Fault Zone (EAFZ) 8 1.2.4 East Anatolian Plateau (EAP) 9 1.2.5 Hellenic Arc 9 1.2.6 Cyprean Arc 10 1.3 Previous Studies 11 1.3.1 Receiver Function 11 1.3.2 Global Positioning System (GPS) 12 1.3.3 Seismic Anisotropy 13 1.3.4 Seismic Tomography beneath Anatolia 15 1.4 Motivation 19 Chapter 2 - Seismic Data and Methodology 20 2.1 Seismic Stations and Selected Earthquakes 20 2.2 Raleigh-wave Phase Velocity Dispersion Curves 21 2.2.1 Data processing 21 2.2.2 Dispersion Curves 30 Chapter 3 - Inversion Scheme 37 3.1 Inversion for Rayleigh-wave Phase Velocity Maps 37 3.2 Outlier Removal 39 3.3 Regularization - Damping and Smoothing 42 3.3.1 Norm Damping 42 3.3.2 Gradient Damping 43 3.3.3 Smoothing 43 3.4 Resolution Tests 52 Chapter 4 – Results 55 4.1 Isotropic Variations – Velocity Anomalies 55 4.2 Azimuthal Anisotropy 56 Chapter 5 - Discussions 58 5.1 North Anatolian Fault Zone (NAFZ) 58 5.2 Anomalously Slow Velocities at Eastern Turkey 60 5.3 Geological Features in the Crust 64 5.4 The Engine of Anatolian Deformation 65 Chapter 6 – Conclusions 70 References 71 Appendix 77 | |
dc.language.iso | en | |
dc.title | 利用雷利波相速度圖探討安納托利亞岩石圈構造 | zh_TW |
dc.title | Lithospheric Structure of Anatolia Revealed by High-resolution Rayleigh-wave Phase-velocity Maps | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 喬凌雲,趙里 | |
dc.contributor.oralexamcommittee | 黃柏壽,郁文哲,曾泰琳 | |
dc.subject.keyword | 安納托利亞,雷利波相速度,表面波層析成像,岩石圈構造,岩石圈與地幔動力機制, | zh_TW |
dc.subject.keyword | Anatolia,Rayleigh-wave phase velocity,surface wave tomography,lithosphere structure,dynamics of lithosphere and mantle, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU201803653 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 442.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。