請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74445
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周瑞仁(Jui-Jen Chou) | |
dc.contributor.author | Chi-Hsuan Hsiao | en |
dc.contributor.author | 蕭啟軒 | zh_TW |
dc.date.accessioned | 2021-06-17T08:36:12Z | - |
dc.date.available | 2024-08-13 | |
dc.date.copyright | 2019-08-13 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-08 | |
dc.identifier.citation | 紀政宏。2015。應用自適應模糊滑動模式控制策略與陀螺儀平衡器於自動導引自行車之平衡控制。碩士論文。台北:臺灣大學生物產業機電工程學研究所。
祥儀企業。IG-52馬達。桃園:祥儀企業股份有限公司。網址:www.shayangye.com。上網日期:2018-07-23。 台灣秋葉原電子企業社。ASD-04馬達驅動板。台北:秋葉原電子企業社。網址: goods.ruten.com.tw/item/show?21304253441919。上網日期:2018-10-01。 謝明宏。2013。應用模糊滑動控制策略於自動導引自行車之平衡控制。碩士論文。台北:臺灣大學生物產業機電工程學研究所。 露天拍賣。輪轂馬達。網址: goods.ruten.com.tw/item/show?21612207673243#info。上網日期:2018-11-06。 聶從煊。2018。機電工程教育之問題導向專題學習模式設計─以無人自行車為例。 碩士論文。台北:臺灣大學生物產業機電工程學研究所。 Aphiratsakun, N. and K. Techakittiroj. 2012. Single loop and double loop balancing control of AU Self-balancing Bicycle (AUSB). IEEE International Conference on Robotics and Biomimetics, 2062-2066. Arduino. Arduino Due. Available at: www.arduino.cc. Accessed 30 July 2018. Åström, K. J., R. E. Klein, and A. Lennartsson. 2005. Bicycle dynamics and control. IEEE Control Systems Magazine 25(4): 26-47. Chen, M. S., C. H. Chen, and F. Y. Yang. 2007. An LTR-observer-based dynamic sliding mode control for chattering reduction. Automatica 43(6): 1111-1116. Defoort, M. and T. Murakami. 2009. Sliding-mode control scheme for an intelligent bicycle. IEEE Transactions on Industrial Electronics 56(9): 3357-3368. Franklin, G. F., J. D. Powell, and A. Emami-Naeini. 2014. Feedback control of dynamic systems.7th ed. Harlow, United Kingdom: Pearson Education Limited. Getz, N. H. and J. E. Marsden. 1995. Control for an autonomous bicycle. IEEE International Conference on Robotics and Automation, 1397-1402. Guo, L., Q. Liao, S. Wei, and Y. Zhuang. 2009. Design of linear quadratic optimal controller for bicycle robot. IEEE International Conference on Automation and Logistics, 1968-1972. Hsieh, M. H., Y. T. Chen, C. H. Chi, and J. J. Chou. 2014. Fuzzy sliding mode control of a riderless bicycle with a gyroscopic balancer. In 'Proc. IEEE International Symposium on Robotic and Sensors Environments ', 13-18. Huang, C. F., Y. C. Tung, and T. J. Yeh. 2017. Balancing control of a robot bicycle with uncertain center of gravity. IEEE International Conference on Robotics and Automation, 5858-5863. Hwang, C. L., H. M. Wu, and C. L. Shih. 2003. Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle. IEEE Transations on Control Systems Technology 17(3): 658–670. Itead. Serial Port Bluetooth Module (Master/Slave) : HC-05. Available at: www.itead.cc. Accessed 25 March 2018. Keo, L. and M. Yamakita. 2009. Controlling balancer and steering for bicycle stabilization. IEEE/RSJ International Conference on Intelligent Robots and Systems, 4541-4546. Keo, L., K. Yoshino , M. Kawaguchi, and M. Yamakita. 2011. Experimental results for stabilizing of a bicycle with a flywheel balancer. IEEE international conference on robotics and automation, 6150-6155. Lam, P. Y. 2011. Gyroscopic stabilization of a kid-size bicycle. IEEE International Conference on Cybernetics and Intelligent Systems, 247-252. Limebeer, D. J. N., and R. S. Sharp. 2006. Bicycles, motorcycles, and models: single-track vehicle modeling and control. IEEE Control Systems Magazine 26(5): 34-61. Murata Manufacturing Co. 2005. Murata Boy. Available at: https://www.murata.com. Accessed 5 July 2019. Murayama, A. and M. Yamakita. 2007. Development of autonomous bike robot with balancer. IEEE International Conference on Instrumentation, Control, Information Technology and System Integration, 1048-1052. Oboe, R. 2018. How disturbance observer changed my life. IEEE International Workshop on Advanced Motion Control, 13-20. Palm, R. 1992. Sliding mode fuzzy control. In 'Proc. IEEE International Conference on Fuzzy Systems.', 519-526. Pratama, D., F. Ardilla, E. H. Binugroho, and D. Pramadihanto. 2015. Tilt set-point correction system for balancing robot using PID controller. IEEE International Conference on Control, Electronics, Renewable Energy and Communications, 129-135. Sakae. CP50, 1-turn potentiometers. Available at: sakae-tsushin.co.jp Accessed 5 March 2018. Sharp, R. S. 1971. The stability and control of motorcycles. Mechanical Engineering Science 13(5): 316-329. Stoica, P., and R. L. Moses. 2005. Spectral analysis of signals. 1st ed. Upper Saddle River, New Jersey: Prentice Hall. Tanaka, Y. and T. Murakami. 2004. Self sustaining bicycle robot with steering controller. IEEE International Conference on Advanced Motion Control, 193-197. TDK InvenSense Online Store. MPU6050, Six Axis Motion Sensors. Available at: store.invensense.com. Accessed 2019 June. Thanh, B. T. and M. Parnichkun. 2008. Balancing control of bicyrobo by particle swarm optimization-based structure-specified mixed H2/H∞ control. International Journal of Advanced Robotic Systems 5(4): 395-402. Young, K. D., V. I. Utkin, and U. Ozguner. 1999. A control engineer's guide to sliding mode control. IEEE Transactions on Control Systems Technology 7(3):328-342. Zhang, Y., P. Wang, J. Yi, D. Song, and T. Liu.2014. Stationary balance control of a bikebot. IEEE International Conference on Robotics and Automation , 6706-6711. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74445 | - |
dc.description.abstract | 本研究旨在建立更具強健性的自動導引自行車系統。為了能使自行車在顛簸的路面上行走、抵抗外在撞擊、校正誤差、單側附載過重、擺動龍頭等因素,將使系統偏離理想情境而降低系統穩定性,需使用具有相當強健性的控制策略,故本研究係使用動態補償機制 (Dynamic compensation) 與具有高強健性的模糊滑動控制 (Fuzzy sliding mode control, FSMC) 策略結合,並利用能迅速提供平衡力矩的陀螺儀平衡器,開發更具強健性的自行車平台。
動態補償機制包含兩大主軸。第一是以過去系統控制表現進行補償的PID控制電壓補償機制 (PID control voltage compensation) 與PID滑模數值補償機制 (PID sliding value compensation),當系統存在穩態誤差時,調整FSMC控制電壓輸出規則與滑模數值原點,以增進系統控制表現。第二是龍頭轉向之補償機制 (Handlebar compensation),當轉動龍頭而造成前輪接地點位置改變時,能夠快速給予所需的補償數值,以維持系統穩定。 本研究中利用Lagrange方程式推導自行車平台之動力模型,再以FSMC策略使系統狀態收斂至平衡點,並將平台參數帶入系統模型,以數值模擬證明其穩定性,接著與前述動態補償機制結合,實現強健的自行車平台,最後在平台單側懸掛負重與轉動龍頭至不同角度,探討不同補償機制下,紀錄其系統狀態響應。 經多組不同負重測試後可得,以PID控制電壓補償策略結合FSMC,最高可承受8.20N-m單側負重,相較僅使用FSMC增加53%之單側負重能力;以PID滑模數值補償機制結合FSMC效果較佳,能提升至9.46N-m以上,相較於僅使用模糊滑動控制提升76%平衡能力。接著再利用迴歸分析找出龍頭轉角與補償數值間的關係,應用於龍頭轉向之補償機制,使自行車平台在快速轉動龍頭時,仍能維持其穩定性。最後將上述研究結果整合,在柏油路上進行定圓繞行,觀察系統狀態並測試其平衡穩定性。 | zh_TW |
dc.description.abstract | This study aims to develop a more robust riderless bicycle system. In order to overcome external disturbance and internal uncertainty, we use a gyroscopic balancer and the control strategy combining fuzzy sliding mode control (FSMC) and dynamic compensation.
There are two aspects of the dynamic compensation. First is to improve control performance by incorporating the steady state error of sliding value. With PID control voltage compensation and PID sliding value compensation, FSMC control voltage and sliding value zero are adjusted respectively by the state error. Second is to further improve the performance by applying the compensation for handlebar turning. If the turning angel is changed, results in movement of the system equilibrium position, the compensator adjusts immediately to maintain the balance stability. The dynamic model of the system is derived based on Lagrange equation; then all state variables converged to equilibrium point by FSMC, proved by the numerical simulation. Next, combining FSMC with the dynamic compensation makes the riderless bicycle system be more capable of resisting constant disturbance, proved by field testing with one-sided loading. Tested by multiple sets of one sided loading, PID control voltage compensation combined with FSMC can bear 8.20N-m one-sided loading, improving 53% one-sided loading capability compared with only using FSMC; PID sliding value compensation combined with FSMC has better effect and can bear 9.46N-m one sided loading above, improving 76% one sided loading capability compared to only using FSMC. Afterward, relation between turning angle and compensation value is found out by regression analysis and applied in handlebar compensation. In the end, the riderless bicycle with the approach developed in the study successfully circles on asphalt road without falling down. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:36:12Z (GMT). No. of bitstreams: 1 ntu-108-R06631025-1.pdf: 8792485 bytes, checksum: 89aa6f2c48b75bfb74abb6bacd712b08 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xiv 第1章 前言 1 第2章 文獻探討 4 2.1 動力學模型 4 2.2 自平衡自行車平台 6 2.3 控制策略 11 2.4 補償機制 13 第3章 材料與方法 15 3.1 平台介紹 15 3.1.1 微控制器 17 3.1.2 陀螺儀平衡器 19 3.1.3 姿態量測元件 22 3.1.4 龍頭控制模組 24 3.1.5 後輪驅動模組 27 3.1.6 通訊裝置 28 3.2 動力學模型推導 29 3.3 控制策略 33 3.3.1 系統模型線性化 33 3.3.2 模型轉換與滑動平面設計 34 3.3.3 模糊滑動控制 36 3.4 動態補償機制 46 3.4.1 PID控制電壓補償 47 3.4.2 PID滑模數值補償 49 3.4.3 龍頭轉向之補償 52 第4章 結果與討論 54 4.1 數值模擬 54 4.1.1 系統參數 54 4.1.2 模擬架構 57 4.1.3 模擬結果 59 4.2 實驗 66 4.2.1 PID控制電壓補償機制 67 4.2.2 PID滑模數值補償機制 72 4.2.3 龍頭轉向之補償機制 76 4.2.4 定圓繞行結果 80 第5章 結論 87 參考文獻 88 附錄1 可控典型式 92 附錄2 高斯白雜訊 93 | |
dc.language.iso | zh-TW | |
dc.title | 應用模糊滑動控制與動態補償機制於自行車之平衡控制 | zh_TW |
dc.title | Control of Self-riding Bicycle System with Fuzzy Sliding Mode Control and Dynamic Compensation | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 連豊力(Feng-Li Lian),黃緒哲(Shiuh-Jer Huang) | |
dc.subject.keyword | 無人自行車,陀螺儀平衡器,模糊滑動控制,動態補償, | zh_TW |
dc.subject.keyword | riderless bicycle,gyroscopic balancer,fuzzy sliding mode control,dynamic compensation, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU201902925 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 8.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。