請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74444
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江茂雄 | |
dc.contributor.author | Shun-Po Chang | en |
dc.contributor.author | 張舜博 | zh_TW |
dc.date.accessioned | 2021-06-17T08:36:08Z | - |
dc.date.available | 2024-08-16 | |
dc.date.copyright | 2019-08-16 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-08 | |
dc.identifier.citation | 1. Flaga, S., J. Pluta, and B. Sapi. Pneumatic valves based on Magnetic Shape Memory Alloys: Potential applications. in Carpathian Control Conference (ICCC), 2011 12th International.
2. Ullakko, K., Magnetically controlled shape memory alloys: A new class of actuator materials. Journal of Materials Engineering and Performance, 1996. 5(3): p. 405-409. 3. Ullakko, K., et al., Large magnetic‐field‐induced strains in Ni2MnGa single crystals. Applied Physics Letters, 1996. 69(13): p. 1966-1968. 4. Pons, J., et al., Ferromagnetic shape memory alloys: Alternatives to Ni–Mn–Ga. Materials Science and Engineering: A, 2008. 481–482(0): p. 57-65. 5. Murray, S.J., et al., 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Applied Physics Letters, 2000. 77(6): p. 886. 6. Sozinov, A., et al., 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Applied Physics Letters, 2013. 102(2): p. 021902. 7. Sozinov, A., et al., Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Applied Physics Letters, 2002. 80(10): p. 1746-1748. 8. Heczko, O. and K. Ullakko, Effect of temperature on magnetic properties of Ni-Mn-Ga magnetic shape memory (MSM) alloys. Magnetics, IEEE Transactions on, 2001. 37(4): p. 2672-2674. 9. J. Gauthier, C.L., A. Hubert, and J. Abadie, Modeling rearrangement process of martensite platelets in a magnetic shape memory alloy Ni2MnGa single crystal under magnetic field and (or) stress action. J. Intell. Mater. Syst. Struct., 2007. 18(3): p. 289–299. 10. Hirsinger, L. and C. Lexcellent, Modelling detwinning of martensite platelets under magnetic and (or) stress actions on Ni–Mn–Ga alloys. Journal of Magnetism and Magnetic Materials, 2003. 254–255(0): p. 275-277. 11. Ullakko, A.A.L.K., Quantitative Model of Large Magnetostrain Effect in Ferromagnetic Shape Memory Alloys. Eur. Phys. J. B, 2000. 14: p. 263. 12. Tan, H. and M.H. Elahinia. Dynamics modeling of ferromagnetic shape memory alloys (FSMA) actuators. Proc. SPIE 6173, Smart Structures and Materials 2006: Smart Structures and Integrated Systems. 13. Gauthier, J.-Y., et al., Nonlinear Hamiltonian modelling of magnetic shape memory alloy based actuators. Sensors and Actuators A: Physical, 2008. 141(2): p. 536-547. 14. O’Handley, R.C., et al., Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials (invited). Journal of Applied Physics, 2000. 87(9): p. 4712-4717. 15. Ge, P. and M. Jouaneh, Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Engineering, 1997. 20(2): p. 99-111. 16. Hassani, V., T. Tjahjowidodo, and T.N. Do, A survey on hysteresis modeling, identification and control. Mechanical Systems and Signal Processing, 2014. 49(1–2): p. 209-233. 17. Ping, G. and J. Musa, Tracking control of a piezoceramic actuator. IEEE Transactions on Control Systems Technology, 1996. 4(3): p. 209-216. 18. Song, G., et al., Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Transactions on Mechatronics, 2005. 10(2): p. 198-209. 19. Visone, C., Hysteresis modelling and compensation for smart sensors and actuators. Journal of Physics: Conference Series, 2008. 138(1): p. 012028. 20. Riccardi, L., et al., Adaptive Control of Positioning Systems With Hysteresis Based on Magnetic Shape Memory Alloys. Control Systems Technology, IEEE Transactions on, 2013. 21(6): p. 2011-2023. 21. Riccardi, L., et al. Robust adaptive control of a Magnetic Shape Memory actuator for precise positioning. in American Control Conference (ACC), 2011. San Francisco, USA. 22. Zhou, M., et al., Hybrid control of magnetically controlled shape memory alloy actuator based on Krasnosel’skii-Pokrovskii model. Journal of Intelligent and Fuzzy Systems, 2015. 29(1): p. 63-73. 23. Zhou, M. and Q. Zhang. Hysteresis model of magnetically controlled shape memory alloy based on a PID neural network. in 2015 IEEE Magnetics Conference (INTERMAG). 24. Zhou, M., et al., Modified KP Model for Hysteresis of Magnetic Shape Memory Alloy Actuator. IETE Technical Review, 2015. 32(1): p. 29-36. 25. Stephan, J.M., et al. Mechanical sensing based on ferromagnetic shape memory alloys. in Sensors, 2010 IEEE. 26. Yin, R., et al., A magnetic shape memory microactuator with intrinsic position sensing. Sensors and Actuators A: Physical, 2016. 246: p. 48-57. 27. Gueltig, M., et al., High Frequency Thermal Energy Harvesting Using Magnetic Shape Memory Films. Advanced Energy Materials, 2014. 4(17): p. 1400751-n/a. 28. Gueltig, M., et al. Thermal energy harvesting based on ferromagnetic shape memory alloy microactuation. in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems. 29. Smith, A.R., et al., Characterization of a high-resolution solid-state micropump that can be integrated into microfluidic systems. Microfluidics and Nanofluidics, 2015. 18(5): p. 1255-1263. 30. Ullakko, K., et al., A magnetic shape memory micropump: contact-free, and compatible with PCR and human DNA profiling. Smart Materials and Structures, 2012. 21(11): p. 115020. 31. Andries J. du Plessis, et al. Latching valve control using ferromagnetic shape memory alloy actuators. 2003, pp. 320-331. 32. Schiepp, T., et al. Energy efficient multistable valve driven by magnetic shape memory alloys. in International Fluid Power Conference, 2016, pp. 491-502. 33. Effner, A., et al. Fast Switching Pneumatic Valves Driven by Magnetic Shape Memory Materials. in International Fluid Power Conference, 2018, pp. 446-459. 34. Zadeh, L.A., Fuzzy sets. Information and control, 1965. 8(3): p. 338-353. 35. S, A., E. H. Mamdani, A Fuzzy Logic Controller for a Dynamic Plant. International Journal of Man-Machine Study, 1975. 7: p. 1-13. 36. Kim, S.-W. and J.-J. Lee, Design of a fuzzy controller with fuzzy sliding surface. Fuzzy Sets and Systems, 1995. 71(3): p. 359-367. 37. Tzafestas, S.G. and G.G. Rigatos, A Simple Robust Sliding-Mode Fuzzy-Logic Controller of the Diagonal Type. Journal of Intelligent and Robotic Systems, 1999. 26(3): p. 353-388. 38. Wu, J.C. and T.S. Liu, A sliding-mode approach to fuzzy control design. IEEE Transactions on Control Systems Technology, 1996. 4(2): p. 141-151. 39. Chiang, M.-H. and J.-H. Lin. A positioning actuator of magnetic shape memory alloys based on fuzzy sliding mode control. in Control & Automation (ICCA), 11th IEEE International Conference on. Taichung, Taiwan. 40. Lin, J.-H. and M.-H. Chiang, Hysteresis Analysis and Positioning Control for a Magnetic Shape Memory Actuator. Sensors, 2015. 15(4): p. 8054. 41. Lin, J.-H. and M.-H. Chiang, Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control. Sensors, 2016. 16(9): p. 1368. 42. Söderberg, O., et al., Ni–Mn–Ga multifunctional compounds. Materials Science and Engineering: A, 2008. 481–482: p. 80-85. 43. Ullakko, K., et al., Magnetically controlled shape memory effect in Ni2MnGa intermetallics. Scripta Materialia, 1997. 36(10): p. 1133-1138. 44. J. Tellinen, I.S., A. Jääskeläinen, I. Aaltio and K. Ullakko BASIC PROPERTIES OF MAGNETIC SHAPE MEMORY ACTUATORS, in 8th international conference ACTUATOR 2002. 2002: Bremen, Germany. 45. Holz, B., et al., MSM Actuators: Design Rules and Control Strategies. Advanced Engineering Materials, 2012. 14(8): p. 668-681. 46. Ziegler, J.G. and N.B. Nichols, Optimum settings for automatic controllers. Transactions of ASME, 1942. 64: p. 759-768. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74444 | - |
dc.description.abstract | 磁性形狀記憶合金是近二十年來被廣泛研究的新型智慧型材料,此種材料具有1000至2000 Hz的高頻響應,以及高達6% 到12% 的形變量。磁性形狀記憶效應致動器即是以磁性形狀記憶合金做為致動元件,藉由控制改變通過磁性形狀記憶的磁場強度來達成作動原理。然而此種材料在實際上的應用仍處於早期的研究發展階段。
本論文創新發展新型比例式氣壓壓力閥,以磁性形狀記憶效應致動器來驅動比例式氣壓壓力閥,取代原本電磁線圈驅動的方式,達到實際上的應用。在實驗上,使用改良式模糊滑動模式控制設計回授控制器,達成新型比例式氣壓壓力閥之壓力追蹤控制,測試包含步階響應、不同頻率以及不同振幅條件下之弦波軌跡和三角波軌跡之追蹤表現。此外,分析新型比例式氣壓壓力閥與FESTO比例式氣壓調壓閥之磁滯曲線及頻率響應特性,並比較包含步階響應、不同頻率以及不同振幅條件下之弦波軌跡和三角波軌跡之追蹤表現,透過壓力軌跡追蹤控制實驗的驗證,證實以磁性形狀記憶效應致動器驅動的新型比例式氣壓壓力閥在壓力軌跡追蹤上可以達到更好的追蹤效果。 | zh_TW |
dc.description.abstract | Magnetic shape memory (MSM) alloys are new smart materials which has been widely investigated since 1996. This material has extraordinary strains up to 12% and frequency bandwidth up to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, the practical industrial applications of MSM alloys are still in early stage of development.
A novel MSM actuator driven pneumatic proportion pressure valve is proposed in this study. We replace the electric solenoid, which can control the spool position with the MSM actuator. In the experiments, the modified fuzzy sliding mode control (MFSMC) was implemented for controller to reach the pressure tracking control, including the step response, the sinusoidal trajectory and the triangular trajectory under the different frequency and different amplitude. Besides, the proportional pressure valve manufactured by FESTO was tested and compared with the pressure controlled valve driven by the MSM actuator developed in this study. Based on the experimental results, it has been verified that the novel MSM actuator driven pneumatic proportion pressure valve and MFSMC controller can achieve better performance in pressure tracking control. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:36:08Z (GMT). No. of bitstreams: 1 ntu-108-R06525029-1.pdf: 8689254 bytes, checksum: 4859b3c679f253e70ce9979caafe1e76 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 ii
中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature Survey 5 1.2.1 Magnetic Shape Memory Alloys 5 1.2.2 Magnetic Shape Memory Actuator 5 1.2.3 Applications of MSM alloys 6 1.2.4 Control Theory 9 1.3 Motivation of the Dissertation 10 1.4 Thesis Outline 11 Chapter 2 Test Rig Layout 12 2.1 Characteristics and Operation of MSM alloys 13 2.2 Test Rig of MSM Actuator Driven Pneumatic Pressure Control Valve 16 2.3 Design of Valve Body 20 Chapter 3 Controller Design 22 3.1 Modified Fuzzy Sliding Mode Control Theory Concept 22 3.2 MFSMC Tracking Controller Design 30 Chapter 4 Experimental Results and Discussions 31 4.1 Open Loop Test of Valve 31 4.1.1 Open Loop Hysteresis Test 31 4.1.2 Open Loop Frequency Response 33 4.2 Experiments of Closed-Loop Pressure Control 36 4.2.1 Pressure Step Response in Closed-Loop Control 36 4.2.2 Pressure Sinusoidal Trajectory Control 44 4.2.3 Pressure Triangular Trajectory Control 58 Chapter 5 Conclusions 70 Reference 72 | |
dc.language.iso | en | |
dc.title | 磁性形狀記憶致動器驅動比例式氣壓壓力閥之研究 | zh_TW |
dc.title | Pneumatic Proportional Pressure Valve Driven by Magnetic Shape Memory Actuator | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林靖國,郭振華,林浩庭 | |
dc.subject.keyword | 磁性形狀記憶合金,磁性形狀記憶效應致動器,比例式氣壓壓力閥,改良式模糊滑動模式控制器,壓力控制, | zh_TW |
dc.subject.keyword | Magnetic shape memory alloys,Magnetic shape memory actuator,Pneumatic proportional pressure valve,Modified fuzzy sliding mode control,Pressure tracking control, | en |
dc.relation.page | 76 | |
dc.identifier.doi | 10.6342/NTU201902875 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 8.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。