請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74403完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡克銓(Keh-Chyuan Tsai) | |
| dc.contributor.author | Yu-Jun Huang | en |
| dc.contributor.author | 黃昱竣 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:33:55Z | - |
| dc.date.available | 2020-08-13 | |
| dc.date.copyright | 2019-08-13 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-11 | |
| dc.identifier.citation | 1.AISC (2016), “Seismic Provisions for Structural Steel Buildings,” American Institute of Steel Construction.
2.Chen, C.C., Lai, C.L. and Lin, K.C. (2009), “Finite Element Analysis of Electro-Slag Welding for Diaphragms in Steel Box Column.” Proceedings, The Eleventh Taiwan-Korea-Japan Joint Seminar on Earthquake Engineering for Building Structures SEEBUS 2009, Kyoto, Japan, December 3-5, 2009. 3.D’Escata, Y. and Devaux, J.C. (1979), “Numerical Study of Initiation, Stable Crack Growth and Maximum Load with a Ductile Fracture Criterion Based on the Growth of Holes.” ASTM STP 668, American Society of Testing and Materials, Philadelphia, pp. 229-248. 4.Kanvinde, A.M. and Deierlein, G.G. (2004), “Micromechanical Simulation of Earthquake-Induced Fracture in Steel Structures.” Report No. BLUME-145, Stanford, California: The John A. Blume Earthquake Engineering Center, July. 5.Kanvinde, A.M. and Deierlein, G.G. (2006), “Void Growth Model and Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels.” Journal of Engineering Mechanics, ASCE/June 2006/1907. 6.Kanvinde, A.M. and Deierlein, G.G. (2007), “Cyclic Void Growth Model to Assess Ductile Fracture Initiation in Structural Steels due to Ultra Low Cycle Fatigue.” Journal of Engineering Mechanics, ASCE/June 2007/701. 7.McClintock, F. A. (1968), “A Criterion for Ductile Fracture by the Growth of Holes,” Journal of Applied Mechanics, 35: 363-371. 8.Myers, A.T., Deierlein, G.G., and Kanvinde, A.M. (2009), “Testing and Probabilistic Simulation of Ductile Fracture Initiation in Structural Steel Components and Weldments.” Report No. BLUME-170, Stanford, California: The John A. Blume Earthquake Engineering Center, May. 9.Rice, J.R. and Tracey, D.M. (1969), “On the Ductile Enlargement of Voids in Triaxial Stress Fields,” Journal of the Mechanics and Physics of Solids, 17: 201-207. 10.Song, Y.H., Ishii, T., Harada, Y. and Morita, K. (2011), “Study on fracture behavior of electro-slag welded joints in beam-to-built-up box column connection.” Proceedings, The 6th International Symposium on Steel Structures, November 3-5, 2011, Seoul, Korea. 11.Wigle, V.R. and Fahnestock, L.A. (2010), “Buckling-restrained brace frame connection performance.” Journal of Constructional Steel Research 66 (2010), 65-74. 12.覃志光 (2017),「電熱熔渣焊及梁翼板偏心對SM570M-CHW鋼梁柱接頭耐震性能影響」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。 13.林克強、莊勝智、張福全、張柏彥 (2008),「台灣典型鋼梁與箱型柱採梁翼切削或梁翼加蓋板抗彎接頭之破壞模式」,鋼結構耐震設計與分析研討會論文集,國家地震工程研究中心,研究報告NCREE-08-037,台南。 14.胡祐瑋 (2018),「高強度鋼梁翼板偏心與柱翼板厚度對電熱熔渣焊破壞效應」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。 15.謝欣倫 (2012),「鋼梁與箱型柱接合內橫隔板耐震設計研究」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。 16.張智星 (2004),「MATLAB 程式設計入門篇」,清蔚科技與鈦思科技共同出版。 17.鄭元良、李台光、蔡克銓、汪家銘、林克強、莊勝智 (2011),「鋼骨梁柱接頭橫隔板耐震性能研究」,國家地震工程研究中心,內政部建築研究所委託研究報告。 18.吳家慶 (2005),「削切蓋板鋼骨梁柱接頭之耐震行為研究」,國立交通大學土木工程學系,碩士論文,周中哲教授指導。 19.吳忠哲 (2016),「鋼梁接箱型柱之內橫隔斷裂試驗與有限元素模型分析研究」,國立台灣大學土木工程學系,碩士論文,蔡克銓教授指導。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74403 | - |
| dc.description.abstract | 箱型柱因具有雙強軸特性,成為臺灣鋼結構產業中常見的柱構件。梁柱抗彎接合須在對應梁翼高程處焊入至少與梁翼同厚度之橫隔板以傳遞梁彎矩,常見之焊接方法為在橫隔板與柱翼板間施作電熱熔渣焊(Electro-Slag Welding, ESW)。此焊接方法效率雖高,但其伴隨之高入熱量將影響焊道周圍鋼材之結晶性質,在電熱熔渣焊道或梁翼板發生偏心的情況下,ESW周圍之熱影響區(Heat Affected Zone, HAZ) 較易因應力集中現象而產生脆性開裂。本研究以SM570M-CHW高強度鋼材作為梁柱構件,探討ESW在受不同幾何配置以及母材厚度影響時之耐震行為,並採用有限元素模型分析與Kanvinde及Deierlein兩位學者於2004年提出之破壞預測模型(SMCS與DSPS,本研究簡稱為α Model與α Cyclic)預測梁柱接頭受反覆載重下之破壞時機,探討在不同柱翼板厚度與梁翼板偏心量下ESW是否會在達到4%弧度層間位移角前發生開裂以及其開裂時機。
本研究以胡祐瑋於2018年進行之兩組實尺寸梁柱接頭反覆載重試驗結果為基礎,另外設計兩組實驗配置並進行反覆載重試驗。四組實驗結果顯示,當梁翼板與橫隔板厚度皆為36mm,且在梁翼偏心量達一倍橫隔板厚度時,柱翼板厚度為25mm之試體於3%弧度層間位移角時即產生ESW開裂,而柱翼板厚度提升至45mm時,ESW於6%弧度層間位移角仍未產生開裂;當梁翼偏心量增加至45mm時,柱翼板厚度為25mm之試體ESW開裂時機提前至2%層間位移角,而柱翼板厚度為45mm之試體ESW仍可於層間位移角達6%時不產生開裂。 為獲得破壞預測模型中之材料韌性參數,本研究針對SM570M-CHW鋼材對應之ESW與HAZ區域製成圓周刻痕試棒(CNT)並進行反覆拉伸試驗,配合ABAQUS有限元素模型分析結果計算出α Cyclic中的材料參數λ以進行破壞時機預測。針對四組梁柱接頭試驗之破壞預測結果顯示,所預測之破壞時機皆早於實際破裂時機,代表α Cyclic預測模型偏向保守。本研究亦以柱翼板厚度、梁翼板厚度以及橫隔梁翼交疊高度為主參數進行參數研究,探討不同配置下對ESW破壞時機之影響。分析結果顯示,當柱翼板厚度與橫隔梁翼交疊高度提升,以及梁翼板厚度減少時,ESW周圍應力集中現象有明顯減緩之趨勢,並可降低ESW開裂之機會。本研究建議柱翼板厚度宜大於或等於橫隔板厚度,且橫隔梁翼交疊高度不宜低於四分之一倍之橫隔板厚度,以避免ESW之脆性破壞。 | zh_TW |
| dc.description.abstract | Steel box columns are widely used in steel structures in Taiwan because both two axes are equally strong. In the moment connections, diaphragm plates are welded inside the box column at the same elevations of beam flanges in order to transfer the beam end moment to the column. Electro-slag welding (ESW) process is commonly applied to attach the diaphragms to the column. The ESW process provides welding efficiency and convenience. However, the high thermal input during this welding procedure results in heat affected zones (HAZs) with an increased hardness and reduced Charpy notch strength. The HAZ may suffer severe stress concentration and fracture in the case of ESW or beam flange eccentricity. In this study, two full-scaled SM570M-CHW high strength steel welded beam-to-box column moment connection specimens were tested, and the key parameters are column flange thickness and beam flange eccentricity with respect to the diaphragm. This study applies finite element model (FEM) analysis as well as stress modified critical strain (SMCS) and degraded significant plastic strain (DSPS) models proposed by Kanvinde and Deierlein in 2004 to predict the fracture instance of ESW under cyclic loading.
Two welded beam-to-box column moment connection tests were conducted by Hu in 2018. The test results show that the connection with the 25mm column flange thickness and a 36mm beam flange eccentricity (equals to the diaphragm and beam flange thickness) failed at the 3% IDR cycle. On the contrary, the other connection with the 45mm column flange thickness and the same eccentricity went through 6% IDR cycle without ESW fracture. In the present study, the same column specimen was used. When the beam flange eccentricity was increased to 45mm, the connection with the 25mm column flange thickness failed at the 2% IDR cycle, and the connection with the 45mm column flange thickness still went through 6% IDR cycle without ESW fracture. In order to compute the material parameter λ in the DSPS model, this study conducted circumferential notched tensile (CNT) coupon tests at the ESW and HAZ regions. The finite element models were constructed to analyze the response of the CNT specimens. After conducting regression analysis on the material parameters, this study applied DSPS model and FEM analysis to predict the crack instance of the aforementioned four moment connection tests. The analysis results show that the DSPS model tends to be conservative. This study also carried out parametric study, focusing on the effects of the column flange thickness, the beam flange thickness and overlapping distance of beam flange and diaphragm on ESW fracture. Results show that increasing the column flange thickness, or the overlapping distance of beam flange and diaphragm and decreasing the beam flange thickness reduce the stress concentration near ESW. In order to avoid the ESW fracture, this study recommends that column flange thickness be equal to or larger than diaphragm or beam flange thickness; and overlapping distance of beam flange and diaphragm be larger than one quarter of the diaphragm or beam flange thickness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:33:55Z (GMT). No. of bitstreams: 1 ntu-108-R06521201-1.pdf: 15176188 bytes, checksum: 244211a02d3126039b8ea4eafe4c6037 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 v 表目錄 viii 圖目錄 ix 照片目錄 xiii 第一章 介紹 1 1.1 研究動機 1 1.2 研究目的與方法 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 電熱熔渣焊(ESW)相關研究 4 2.1.1 林克強[2008] 4 2.1.2 Chen et al. [2009] 4 2.1.3 鄭元良[2011] 4 2.2 破壞預測模型理論與應用 5 2.2.1 Kanvinde and Deierlein[2004, 2006, 2007] 5 2.2.2 吳忠哲[2016] 11 2.2.3 覃志光[2017] 11 2.2.4 胡祐瑋[2018] 12 第三章 破壞預測模型之參數計算與應用方法 13 3.1 材料試驗 13 3.1.1 材料來源 13 3.1.2 圓周刻痕拉伸(CNT)試驗 14 3.2 有限元素模型建立與破壞預測模型之應用 14 3.2.1 SMCS(α Model) 15 3.2.2 DSPS(α Cyclic) 18 第四章 實尺寸鋼梁接箱型柱接頭反覆載重試驗 21 4.1 2018年實尺寸梁柱接頭試驗 21 4.1.1 試體介紹 21 4.1.2 試驗結果 22 4.2 2019年實尺寸梁柱接頭試驗 22 4.2.1 試體設計 22 4.2.2 試體製造與組裝 23 4.2.3 量測計畫 24 4.2.4 試驗過程與結果 25 4.3 箱型柱試體切片與酸洗 27 4.3.1 箱型柱試體焰切與加工 27 4.3.2 ESW試片酸洗 27 4.3.3 ESW試片觀察與討論 28 4.4 綜合討論 29 第五章 梁柱接頭有限元素分析與參數研究 31 5.1 梁柱接頭有限元素模型介紹 31 5.2 α Cyclic修正與應用 33 5.2.1 關鍵區域定義 33 5.2.2 α Cyclic公式修正 34 5.2.3 α Cyclic應用 35 5.3 破裂預測分析與實驗結果之比較及討論 35 5.4 影響ESW破裂時機之參數研究 36 5.4.1 參數選擇 36 5.4.2 有限元素模型建立 37 5.4.3 分析結果與討論 38 5.5 考量實務尺寸之ESW參數研究 40 5.5.1 尺寸介紹與參數選擇 40 5.5.2 有限元素模型建立 40 5.5.3 分析結果與討論 41 第六章 結論與建議 42 6.1 研究結論 42 6.2 相關建議 43 參考文獻 44 附錄一 BC45-45試體報告檢驗書 127 附錄二 BC25F-45試體報告檢驗書 130 | |
| dc.language.iso | zh-TW | |
| dc.subject | 橫隔梁翼交疊高度 | zh_TW |
| dc.subject | 圓周刻痕反覆拉伸試驗 | zh_TW |
| dc.subject | 梁柱接頭 | zh_TW |
| dc.subject | 鋼材破壞預測模型 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | SM570M-CHW高強度鋼 | zh_TW |
| dc.subject | 電熱熔渣焊 | zh_TW |
| dc.subject | 鋼箱型柱 | zh_TW |
| dc.subject | circumferential notched tensile test | en |
| dc.subject | electro-slag welding | en |
| dc.subject | SM570M-CHW high strength steel | en |
| dc.subject | finite element analysis | en |
| dc.subject | fracture prediction model | en |
| dc.subject | beam-to-box column connection | en |
| dc.subject | steel box columns | en |
| dc.subject | overlapping distance of beam flange and diaphragm | en |
| dc.title | 高強度鋼箱型柱翼厚與橫隔梁翼交疊高對電熱熔渣焊破壞時機影響 | zh_TW |
| dc.title | Effects of SM570M-CHW steel box column flange thickness and overlap distance of diaphragm and beam flange on electro-slag welding failure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林克強,陳誠直 | |
| dc.subject.keyword | 鋼箱型柱,電熱熔渣焊,SM570M-CHW高強度鋼,有限元素分析,鋼材破壞預測模型,梁柱接頭,圓周刻痕反覆拉伸試驗,橫隔梁翼交疊高度, | zh_TW |
| dc.subject.keyword | steel box columns,electro-slag welding,SM570M-CHW high strength steel,finite element analysis,fracture prediction model,beam-to-box column connection,circumferential notched tensile test,overlapping distance of beam flange and diaphragm, | en |
| dc.relation.page | 132 | |
| dc.identifier.doi | 10.6342/NTU201902736 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 14.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
