請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰 | |
| dc.contributor.author | Yi-Chen Ho | en |
| dc.contributor.author | 何羿辰 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:32:43Z | - |
| dc.date.available | 2019-08-15 | |
| dc.date.copyright | 2019-08-15 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-11 | |
| dc.identifier.citation | [1] R. L. Siegel, K. D. Miller, and A. Jemal, 'Cancer statistics, 2019,' CA: a cancer journal for clinicians, vol. 69, no. 1, pp. 7-34, Jan 2019.
[2] M. S. Islam, N. Kaabouch, and W. C. Hu, 'A survey of medical imaging techniques used for breast cancer detection,' in IEEE International Conference on Electro-Information Technology, EIT 2013, 2013, pp. 1-5. [3] A. Vourtsis and A. Kachulis, 'The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women,' European radiology, vol. 28, no. 2, pp. 592-601, Aug 2018. [4] W. K. Moon, Y.-W. Shen, M. S. Bae, C.-S. Huang, J.-H. Chen, and R.-F. Chang, 'Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images,' IEEE transactions on medical imaging, vol. 32, no. 7, pp. 1191-1200, Jul 2012. [5] C.-M. Lo et al., 'Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed,' IEEE transactions on medical imaging, vol. 33, no. 7, pp. 1503-1511, Jul 2014. [6] T.-C. Chiang, Y.-S. Huang, R.-T. Chen, C.-S. Huang, and R.-F. Chang, 'Tumor detection in automated breast ultrasound using 3-D CNN and prioritized candidate aggregation,' IEEE transactions on medical imaging, vol. 38, no. 1, pp. 240-249, Jul 2018. [7] J. Redmon and A. Farhadi, 'YOLO9000: better, faster, stronger,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 7263-7271. [8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, 'You only look once: Unified, real-time object detection,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788. [9] J. Redmon and A. Farhadi, 'Yolov3: An incremental improvement,' arXiv preprint arXiv:1804.02767, Apr 2018. [10] W. Liu et al., 'Ssd: Single shot multibox detector,' in European conference on computer vision, 2016, pp. 21-37. [11] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, 'Focal loss for dense object detection,' in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980-2988. [12] S. Ren, K. He, R. Girshick, and J. Sun, 'Faster r-cnn: Towards real-time object detection with region proposal networks,' in Advances in neural information processing systems, 2015, pp. 91-99. [13] R. Girshick, 'Fast r-cnn,' in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440-1448. [14] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun, 'Detnet: Design backbone for object detection,' in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 334-350. [15] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, 'Feature pyramid networks for object detection,' in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117-2125. [16] F. Yu and V. Koltun, 'Multi-scale context aggregation by dilated convolutions,' arXiv preprint arXiv:1511.07122, Nov 2015. [17] K.-H. Kim, S. Hong, B. Roh, Y. Cheon, and M. Park, 'Pvanet: Deep but lightweight neural networks for real-time object detection,' arXiv preprint arXiv:1608.08021, Aug 2016. [18] B. Xu, N. Wang, T. Chen, and M. Li, 'Empirical evaluation of rectified activations in convolutional network,' arXiv preprint arXiv:1505.00853, May 2015. [19] S. Ioffe and C. Szegedy, 'Batch normalization: Accelerating deep network training by reducing internal covariate shift,' arXiv preprint arXiv:1502.03167, Feb 2015. [20] D. Pedamonti, 'Comparison of non-linear activation functions for deep neural networks on MNIST classification task,' arXiv preprint arXiv:1804.02763, Apr 2018. [21] Y. Wu et al., 'Rethinking Classification and Localization in R-CNN,' arXiv preprint arXiv:1904.06493, Apr 2019. [22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 'Imagenet classification with deep convolutional neural networks,' in Advances in neural information processing systems, 2012, pp. 1097-1105. [23] D. P. Chakraborty, 'Maximum likelihood analysis of free‐response receiver operating characteristic (FROC) data,' Medical physics, vol. 16, no. 4, pp. 561-568, Jul 1989. [24] R. N. Strickland, Image-processing techniques for tumor detection. 2002. [25] R. Kohavi, 'A study of cross-validation and bootstrap for accuracy estimation and model selection,' in Ijcai, 1995, vol. 14, no. 2, pp. 1137-1145. [26] M. J. Van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen, and C. I. Sánchez, 'Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images,' IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1273-1284, Feb 2016. [27] S. M. Pizer et al., 'Adaptive histogram equalization and its variations,' Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355-368, Sep 1987. [28] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, 'Soft-NMS--Improving Object Detection With One Line of Code,' in Proceedings of the IEEE international conference on computer vision, 2017, pp. 5561-5569. [29] W. Han et al., 'Seq-nms for video object detection,' arXiv preprint arXiv:1602.08465, Feb 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74380 | - |
| dc.description.abstract | 全乳房自動超音波(Automated Breast Ultrasound, ABUS)已被廣泛應用在乳房篩檢上,然而,其產生的數百張超音波影像反而造成醫師需耗費較多時間閱片。近來,基於卷積類神經網路(Convolutional Neural Network, CNN)開發的電腦輔助系統(Computer-aided System)已證實在醫學影像上能有效協助醫師進行腫瘤偵測與診斷。因此本研究提出了一個單階段的三維卷積神經網路電腦輔助偵測系統,先行找到影像中可能的病灶位置,協助醫師檢閱影像。本系統特點是一次性地(One Take)掃描整個ABUS影像進行腫瘤偵測,因此偵測速度極快,平均每個全乳房超音波掃描影像在0.8秒內可以完成掃描,此外,我們更針對小腫瘤問題設計系統架構,減少遺漏的情況。
在系統設計上,我們除了修改單階段的YOLOv3 (You Only Look Once Version 3) 偵測架構外,更應用焦點損失(Focal Loss)概念修改損失函數與提出循環訓練方法(Cycle Learning)改善資料不平衡問題(Data Imbalance)。在偵測時,先調整全乳房超音波影像大小,接著系統掃描影像並產生具有腫瘤的邊界框。最後,為了避免重複偵測的問題,我們使用非最大值抑制(Non-maximal Suppression, NMS)來移除重疊的邊界框得到最後預測結果。系統在偵測率98%、95%、90%的情況下,每個全乳房自動超音波掃描影像分別平均產生3.8、2.0、1.0個偽陽性(False Positive, FP)腫瘤。相較過去的方法,我們提出的系統效果更好且執行速度更快。 | zh_TW |
| dc.description.abstract | The automated breast ultrasound (ABUS) had been widely used in breast examination. However, it is time-consuming for the physician to review hundreds of slices produced by ABUS. In recent, the computer-aided system based on the convolutional neural network (CNN) had been proven that it can assist effectively the physician for tumor detection and diagnosis on the medical image. Therefore, a computer-aided detection (CADe) system based on the one-stage 3-D convolutional neural network (CNN), 3-D You Only Look Once (3-D YOLO), is proposed in this study to locate suspicious lesions for the physician reviewing image. The particular characteristic of our system is that the whole ABUS is detected quickly in one take and the average detecting time of per ABUS image is 0.8 second. Moreover, the proposed system is also designed for smaller tumors to reduce the misdetection rate.
In the proposed system, for achieving better performance, not only the one-stage YOLOv3 (You Only Look Once Version 3) object architecture is used and redesigned for smaller tumors, but also the essence of focal loss is applied to our loss function, and the scheme of cycle learning is designed for solving data imbalance problem. Before the tumor detection, the ABUS images are resized firstly to match the model shape. Then, the bounding boxes of tumor candidates are generated by the detection system. After that, the non-maximal suppression (NMS) is performed to eliminate the overlapping for determining the final tumor bounding box. Finally, our method achieves sensitivities of 98%, 95%, 90% with 3.8, 2.0, 1.0 false positives (FP) per pass, respectively. Compared to the previous works, the proposed CADe system is much better and faster. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:32:43Z (GMT). No. of bitstreams: 1 ntu-108-R06922132-1.pdf: 2578221 bytes, checksum: 8784127865298c9784b13a669021f6fa (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III ABSTRACT V TABLE OF CONTENTS VII LIST OF FIGURES VIII LIST OF TABLES IX CHAPTER 1. INTRODUCTION 1 CHAPTER 2. MATERIALS 4 CHAPTER 3. METHODS 6 3.1. IMAGE RESIZING 7 3.2. TUMOR DETECTION CNN 8 3.2.1 3-D DETECTION NETWORK 9 3.2.2 LOSS FUNCTION 13 3.2.3 MODEL TRAINING 17 3.3. NON-MAXIMAL SUPPRESSION 19 CHAPTER 4. EXPERIMENT RESULTS AND DISCUSSIONS 21 4.1. EXPERIMENT ENVIRONMENT 21 4.2. EVALUATION 21 4.3. EXPERIMENT RESULTS 22 4.4. DISCUSSIONS 29 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 34 REFERENCE 35 | |
| dc.language.iso | en | |
| dc.subject | 三維卷積神經網路 | zh_TW |
| dc.subject | 焦點損失 | zh_TW |
| dc.subject | 一次完成 | zh_TW |
| dc.subject | YOLOv3 | zh_TW |
| dc.subject | 電腦輔助偵測 | zh_TW |
| dc.subject | 全乳房自動超音波 | zh_TW |
| dc.subject | focal loss | en |
| dc.subject | CADe system | en |
| dc.subject | 3-D CNN | en |
| dc.subject | one take | en |
| dc.subject | YOLOv3 | en |
| dc.subject | ABUS | en |
| dc.title | 基於深度學習之乳房超音波單階段腫瘤偵測 | zh_TW |
| dc.title | One-stage Tumor Detection for Automated Breast Ultrasound Using Deep Convolutional Neural Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅崇銘,陳鴻豪 | |
| dc.subject.keyword | 全乳房自動超音波,電腦輔助偵測,三維卷積神經網路,一次完成,YOLOv3,焦點損失, | zh_TW |
| dc.subject.keyword | ABUS,CADe system,3-D CNN,one take,YOLOv3,focal loss, | en |
| dc.relation.page | 37 | |
| dc.identifier.doi | 10.6342/NTU201900766 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
