Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74376
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳翰
dc.contributor.authorTe-Hsun Yangen
dc.contributor.author楊德勛zh_TW
dc.date.accessioned2021-06-17T08:32:30Z-
dc.date.available2024-08-16
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation[1] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer 14 (1973) 589.
[2] M. Armand, The history of polymer electrolytes, Solid State Ionics 69 (1994) 309-319.
[3] G.G. Cameron, Solid polymer electrolytes: Fundamentals and technological Applications. Fiona M. Gray. VCH Publishers Inc., New York 1991. pp. x + 245, price £44.00. ISBN 0–89573–772–8, Polymer International 32 (1993) 436-436.
[4] S. Choudhary, R.J. Sengwa, Effect of different anions of lithium salt and MMT nanofiller on ion conduction in melt-compounded PEO–LiX–MMT electrolytes, Ionics 18 (2012) 379-384.
[5] C.V. Subba Reddy, G.P. Wu, C.X. Zhao, W. Jin, Q.Y. Zhu, W. Chen, S.-i. Mho, Mesoporous silica (MCM-41) effect on (PEO+LiAsF6) solid polymer electrolyte, Current Applied Physics 7 (2007) 655-661.
[6] S. Klongkan, J. Pumchusak, Effects of Nano Alumina and Plasticizers on Morphology, Ionic Conductivity, Thermal and Mechanical Properties of PEO-LiCF3SO3 Solid Polymer Electrolyte, Electrochimica Acta 161 (2015) 171-176.
[7] S. Lascaud, M. Perrier, A. Vallee, S. Besner, J. Prud'homme, M. Armand, Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes, Macromolecules 27 (1994) 7469-7477.
[8] C. Vachon, C. Labreche, A. Vallee, S. Besner, M. Dumont, J. Prud'homme, Microphase Separation and Conductivity Behavior of Poly(propylene oxide)-Lithium Salt Electrolytes, Macromolecules 28 (1995) 5585-5594.
[9] D. Andersson, P. Carlsson, D. Engberg, L.M. Torell, L. Börjesson, R.L. McGreevy, W.S. Howells, Modelling of segmental dynamics in polymer electrolyte PPO-LiClO4, by surface fitting of quasi-elastic neutron scattering data, Physica B: Condensed Matter 266 (1999) 126-130.
[10] Y. Tominaga, T. Mizumo, H. Ohno, Ionic conductivity of PPO-sulfonamide salt hybrids and their network polymers, Polymers for Advanced Technologies 11 (2000) 524-528.
[11] G.B. Appetecchi, F. Croce, B. Scrosati, Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes, Electrochimica Acta 40 (1995) 991-997.
[12] Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, W. Di, The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries, Journal of Membrane Science 329 (2009) 56-59.
[13] C.-C. Su, M. He, P.C. Redfern, L.A. Curtiss, I.A. Shkrob, Z. Zhang, Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries, Energy & Environmental Science 10 (2017) 900-904.
[14] L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries, Journal of Materials Chemistry A 4 (2016) 10038-10069.
[15] A.M. Stephan, R. Thirunakaran, N.G. Renganathan, V. Sundaram, S. Pitchumani, N. Muniyandi, R. Gangadharan, P. Ramamoorthy, A study on polymer blend electrolyte based on PVC/PMMA with lithium salt, Journal of Power Sources 81-82 (1999) 752-758.
[16] A.M. Stephan, N.G. Renganathan, T.P. Kumar, R. Thirunakaran, S. Pitchumani, J. Shrisudersan, N. Muniyandi, Ionic conductivity studies on plasticized PVC/PMMA blend polymer electrolyte containing LiBF4 and LiCF3SO3, Solid State Ionics 130 (2000) 123-132.
[17] S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein, Conducting polymer-based electrochemical redox supercapacitors using proton and lithium ion conducting polymer electrolytes, Polymer International 47 (1998) 28-33.
[18] C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly Flexible and All-Solid-State Paperlike Polymer Supercapacitors, Nano Letters 10 (2010) 4025-4031.
[19] C.-C. Yang, S.-T. Hsu, W.-C. Chien, All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes, Journal of Power Sources 152 (2005) 303-310.
[20] G. Ma, J. Li, K. Sun, H. Peng, J. Mu, Z. Lei, High performance solid-state supercapacitor with PVA–KOH–K3[Fe(CN)6] gel polymer as electrolyte and separator, Journal of Power Sources 256 (2014) 281-287.
[21] N. Polisetti, M.M. Islam, M. Griffith, The Artificial Cornea, in: B. Wright, C.J. Connon (Eds.), Corneal Regenerative Medicine: Methods and Protocols, Humana Press, Totowa, NJ, 2013, pp. 45-52.
[22] M. Rafat, F. Li, P. Fagerholm, N.S. Lagali, M.A. Watsky, R. Munger, T. Matsuura, M. Griffith, PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering, Biomaterials 29 (2008) 3960-3972.
[23] J.T. Jacob, J.R. Rochefort, J. Bi, B.M. Gebhardt, Corneal epithelial cell growth over tethered-protein/peptide surface-modified hydrogels, Journal of Biomedical Materials Research Part B: Applied Biomaterials 72B (2005) 198-205.
[24] Y.-P. Lee, H.-Y. Liu, P.-C. Lin, Y.-H. Lee, L.-R. Yu, C.-C. Hsieh, P.-J. Shih, W.-P. Shih, I.J. Wang, J.-Y. Yen, C.-A. Dai, Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery, Colloids and Surfaces B: Biointerfaces 175 (2019) 26-35.
[25] A. Fakhari, M. Corcoran, A. Schwarz, Thermogelling properties of purified poloxamer 407, Heliyon 3 (2017) e00390-e00390.
[26] G.E. Blomgren, The Development and Future of Lithium Ion Batteries, Journal of The Electrochemical Society 164 (2017) A5019-A5025.
[27] D. Robaei, S. Watson, Corneal blindness: a global problem, Clinical & Experimental Ophthalmology 42 (2014) 213-214.
[28] The Effect of Donor Age on Corneal Transplantation Outcome: Results of the Cornea Donor Study, Ophthalmology 115 (2008) 620-626.e626.
[29] T.V. Chirila, S. Vijayasekaran, R. Horne, Y.-C. Chen, P.D. Dalton, I.J. Constable, G.J. Crawford, Interpenetrating polymer network (IPN) as a permanent joint between the elements of a new type of artificial cornea, Journal of Biomedical Materials Research 28 (1994) 745-753.
[30] Q. Zhang, Z. Fang, Y. Cao, H. Du, H. Wu, R. Beuerman, M.B. Chan-Park, H. Duan, R. Xu, High Refractive Index Inorganic–Organic Interpenetrating Polymer Network (IPN) Hydrogel Nanocomposite toward Artificial Cornea Implants, ACS Macro Letters 1 (2012) 876-881.
[31] B.J. Alder, T.E. Wainwright, Phase Transition for a Hard Sphere System, The Journal of Chemical Physics 27 (1957) 1208-1209.
[32] B.J. Alder, T.E. Wainwright, Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics 31 (1959) 459-466.
[33] W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics 76 (1982) 637-649.
[34] H. Sun, COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds, The Journal of Physical Chemistry B 102 (1998) 7338-7364.
[35] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, Journal of the American Chemical Society 117 (1995) 5179-5197.
[36] H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, An ab Initio CFF93 All-Atom Force Field for Polycarbonates, Journal of the American Chemical Society 116 (1994) 2978-2987.
[37] J.R. Maple, U. Dinur, A.T. Hagler, Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces, Proc Natl Acad Sci U S A 85 (1988) 5350-5354.
[38] J.W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics, Cambridge University Press, Cambridge, 2010.
[39] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics 81 (1984) 511-519.
[40] W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical review. A, General physics 31 (1985) 1695-1697.
[41] L. Euler, F. Rudio, Opera Omnia: 1638-1788 ; Introduction to Leonhardi Euleri Opera Omnia Vol. X Et XI Seriei Secundae. The rational mechanics of flexible or elastic bodies, Teubner1960.
[42] Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
[43] Accelrys (2016) Materials Studio. http://accelrys.com/products/collaborative-science/biovia-materials-studio/.
[44] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics 117 (1995) 1-19.
[45] M. Moreno, R. Quijada, M.A. Santa Ana, E. Benavente, P. Gomez-Romero, G. González, Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte, Electrochimica Acta 58 (2011) 112-118.
[46] H.Z. Geng, R. Rosen, B. Zheng, H. Shimoda, L. Fleming, J. Liu, O. Zhou, Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes, Advanced Materials 14 (2002) 1387-1390.
[47] C.A.F. Pintão, C.X. Cardoso, Elastic modulus of PVDF with bentonite or LiNbO3 using deformation energy, Polímeros 27 (2017) 183-188.
[48] A.A. Abdel-Wahab, S. Ataya, V.V. Silberschmidt, Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling, Polymer Testing 58 (2017) 86-95.
[49] S. Salman, N. Bakr, H. T. Homad, A Study of FTIR and some Mechanical Properties of Sodium Iodide (NaI) Salt Filled Polymer Polyvinyl Alcohol (PVA) Films, 2018.
[50] S. Kalaga, M. K. Neelam, Elastic properties of PVC pipes, 2002.
[51] M. Ibrahim, M. El-Badry, M. Hassan, H. Elsaghir, Performance of Poloxamer 407 as Hydrophilic Carrier on the Binary Mixtures with Nimesulide, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74376-
dc.description.abstract隨著科技迅速的發展,計算機模擬已經成為非常重要的開發材料方法。在本論文中利用了分子動力學去探討材料之物理性質諸如玻璃轉移溫度、楊式模數以及平方位移。第一部分,我們探討改質電解質的物理性質,目的為維持低玻璃轉移溫度並提升材料硬度。我們發現改變高分子的側鏈時,官能基的大小影響了整個聚乙二醇的流動狀態,並間接影響了它的物理性質。結果得知添加氟官能基的材料在玻璃轉移溫度維持在250K且楊式模數增加到1.6GPa,這樣的物理性質符合我們所要改質的目標。第二部分,同樣是透過分子動力學探討聚合物材料之物理性質,我們發現了在加入水的人工眼角模材料泊洛沙姆-407之中,隨著水的重量百分比越高,楊式模數迅速的下降且由應力應變圖震盪情形趨近於水溶液相態的拉伸狀況發現水主導了整體系統的物理性質。總結來說,我們可以利用分子動力學來做材料物理性質的初步了解並預測。zh_TW
dc.description.abstractOwing to the rapid development of the science and technology, computational modeling has become one of the most important ways to discover innovative materials. In this thesis, molecular dynamics is used to study physical properties such as glass transition temperature, Young’s modulus and mean square displacement of the materials. In part one, we aimed to remain low Tg and enhance the stiffness of the materials by discussing the physical properties of the polymer electrolytes. We found that as we modified the side chain of the polyethylene oxide, the volume of the functional groups influences the mobility of the polymer a lot and it also affects the physical properties indirectly. Judging from the results, polymer electrolytes materials which are added with fluoro functional groups has no change in glass transition temperature about 250K but has a lot improvement in Young’s modulus about 1.6GPa. The physical properties meet the goal that we aimed to modify. In part two, molecular dynamics is also used to describe the physical properties of the system. It is also found that as we increase the ratio of the water in the artificial corneal material system which is poloxamer 407, Young’s modulus decrease rapidly and the dramatic fluctuations in stress strain diagram because the H2O dominate the physical properties by molecular dynamics simulations. In conclusion, we can preliminary understanding and predict the physical properties of the materials by using molecular dynamics simulations.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:32:30Z (GMT). No. of bitstreams: 1
ntu-108-R06525078-1.pdf: 2860137 bytes, checksum: 882868b4e8aa8c556fba1fc6d3846165 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figure vi
List of Table viii
Chapter 1 1
Introduction 1
Motivation 4
Chapter 2 Theory 7
2.1 Molecular Dynamics 7
2.1.1 Newton’s laws of motion 7
2.1.2 Ensembles 10
2.2 Properties 12
2.2.1 Glass transition temperature 12
2.2.2 Mean square displacement 12
2.2.3 Young’s modulus 13
Chapter 3 Thermal and Mechanical Properties of Modified Poly (ethylene oxide) 15
3.1 Simulation Model 15
3.2 Modified Polymer Electrolytes 20
3.3 Results 24
3.3.1 Glass Transition temperature (Tg) 24
3.3.2 Mean Square Displacement (msd) 31
3.3.3 Young’s Modulus (E) 36
Chapter 4 Mechanical Properties of Artificial Cornea Materials 42
4.1 Simulation Model 42
4.2 Result 45
Chapter 5 48
Conclusions 48
Future Work 49
Reference 50
dc.language.isoen
dc.subject分子動力學zh_TW
dc.subject人工眼角膜zh_TW
dc.subject泊洛沙姆-407zh_TW
dc.subject聚乙二醇zh_TW
dc.subject玻璃轉移溫度zh_TW
dc.subject平方位移zh_TW
dc.subject楊式模數zh_TW
dc.subjectmolecular dynamicsen
dc.subjectartificial corneaen
dc.subjectpoloxamer 407en
dc.subjectYoung’s modulusen
dc.subjectmean square displacementen
dc.subjectglass transition temperatureen
dc.subjectpolyethylene oxideen
dc.title利用分子動力學計算改質之聚乙二醇熱力學與力學性質以及泊洛沙姆407之力學性質zh_TW
dc.titleStudies on Thermal and Mechanical Properties of Modified Poly(ethylene oxide) and Mechanical Property of Poloxamer 407 by Molecular Dynamics Simulationsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許文翰,戴子安,李玟頡,王耀群
dc.subject.keyword分子動力學,聚乙二醇,玻璃轉移溫度,平方位移,楊式模數,泊洛沙姆-407,人工眼角膜,zh_TW
dc.subject.keywordmolecular dynamics,polyethylene oxide,glass transition temperature,mean square displacement,Young’s modulus,poloxamer 407,artificial cornea,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201902884
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved