Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorYu-Hua Chenen
dc.contributor.author陳昱樺zh_TW
dc.date.accessioned2021-06-17T08:32:17Z-
dc.date.available2019-08-19
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation1. M. F. Tsai, S. H. G. Chang, F. Y. Chang, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yen, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,’’ ACS. Nano. 7, 5330-5342 (2013).
2. A. Jurranz, P. Jaen, F. S. Rodriguez, J. Cuevas, and S. Gonzalez, “Photodynamic therapy of cancer. Basic principles and applications,” Clin. Transl. Oncol. 10, 148 (2008).
3. S. Kim, T. Y. Ohulchanskyy, H. E.Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669-2675 (2007).
4. I. Yoon, J. Z. Li, and Y. K. Shim, “Advance in photosensitizers and light delivery for photodynamic therapy,” Clin. Endosc. 46, 7-23 (2013).
5. N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nature. Med. 18, 1580-1586 (2012).
6. C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials. 32, 6145-6154 (2011).
7. C. Wang, L. Cheng, and Z. Liu, “Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics,” Theranostics. 3, 317-330 (2013).
8. M. E. Lim, Y. L. Lee, Y. Zhang, and J. J. H. Chu, “Photodynamic inactivation of viruses using upconversion nanoparticles,” Biomaterials. 33, 1912-1920 (2012).
9. S. S. Lucky, N. M. Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion,” ACS. Nano. 9, 191-205 (2015).
10. D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano. Lett. 6, 2383-2386 (2006).
11. M. Balaz, H. A. Collins, E Dahlstedt, and H. L. Anderson, “Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wavelengths,” Org. Biomol. Chem. 7, 874-888 (2009).
12. K. S. Samkoe, and D. T. Cramb, “Application of an ex ovo chicken chorioallantoic membrane model for two-photon excitation photodynamic therapy of age-related macular degeneration,” J. Biomed. Opt. 8, 410-417 (2003).
13. K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. of Biomed Opt. 12, 034025 (2007).
14. P. K. Frederiksen, M. Jorgensen, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen,” J. Am. Chem. Soc. 123, 1215-1221 (2001).
15. P. K. Frederiksen, S. P. Mcllroy, C. B. Nielsen, L. Nikojasen, E. Skovson, M. Jørgensen, K. V. Mikkelson, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen in water,” J. Am. Chem. Soc. 127, 255-269 (2005).
16. K. Ogawa, H. Hasegawa, Y. Inaba, Y. Kobuke, H. Inouye, Y. Kanemitsu, E. Kohno, T. Hirano, S. Ogura, and I. Okura, J. “Water-soluble bis(imidazolylporphyrin) self-assemblies with large two-photon absorption cross sections as potential agents for photodynamic therapy,” Med. Chem. 49, 2276-2283 (2006).
17. J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” Photochem. Photobio. 68, 156-164 (2002).
18. S. P. Mc, E. Clo, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen:  sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70, 1134-1146 (2005).
19. A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, “Enhancement of two-photon absorption in tetrapyrrolic compounds,” J. Opt. Soc. Am. B. 20, 321-332 (2003).
20. A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE. J. Sel. Top. Quantum Electronics. 7, 971-975 (2001).
21. W. G. Fisher, WP. Jr. Patridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobio. 66, 141-155 (1997).
22. C. J. Murph, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Acc. “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Chem. Res. 41, 1721-1730 (2008).
23. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small. 1, 325-327 (2005).
24. X. D. Zhang, D. Wu, X. Shen, P. X. Liu, B. Zhao, H. Zhang, Y. M. Sun, L. A. Zhang, and F. Y. Fan, “Size–dependent in vivo toxicity of PEG-coated gold nanoparticles,” Nanomed. 6, 2071-2081 (2011).
25. W. S. Cho, M. Cho, J. Jeong, M. Choi, H. Y. Cho, B. S. Han, S. H. Kim, H. O. Kim, Y. T. Lim, B. H. Chung, and J. Jeong, “Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles,” Toxicol. Appl. Pharmacol. 236, 16-24 (2009).
26. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. E. Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, M. A. E. Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 267, 57-66 (2008).
27. S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars,” Adv. Mater. 25, 3055-3061 (2013).
28. B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, Y. Choi, “Gold nanorod−photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS. Nano. 5, 1086-1094 (2011).
29. Y. K. Xu, S. Huang, S. Kim, J. Y. Chen, “Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection,” ACS. Appl. Mater. 6, 5619-5628 (2014).
30. T. Zhao, K. Yu, L. Li, T. Zhang, Z. Guan, N. Gao, P. Yuan, S. Li, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy,” ACS. Appl. Mater. 6, 2700-2708 (2014).
31. M. C. Daniel, and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293-346 (2004).
32. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B. 110, 19935-19944 (2006).
33. J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” Phys. Chem. Lett. 1, 686-695 (2010).
34. M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9, 287-291 (2009).
35. W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS. Nano. 5, 1995-2003 (2011).
36. G. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69, 3892-3900 (2009).
37. A. M. Gobin, J. J. Moon, and J. L. West, “ EphrinA1-targeted nanoshells for photothermal ablation of prostate cancer cells,” Int. J. Nanomedicine 3, 351-358 (2008).
38. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezel, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929-1934 (2007).
39. L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat. 125, 27-34 (2011).
40. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkienen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318-1322 (2007).
41. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473 (2005).
42. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small. 6, 811-817 (2010).
43. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B. 66, 153305 (2002).
44. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
45. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
46. G. Sun and J. B. Khurgin, “Plasmon enhancement of luminescence by metal nanoparticles,” IEEE J. Select. Topics in Quantum Electron. 17, 110-118 (2011).
47. K. Tateishi, M. Funato, Y. Kawakami, K. Okamoto, and K. Tamada, “Highly enhanced green emission from InGaN quantum wells due to surface plasmon resonance on aluminum films,” Appl. Phys. Lett. 106, 121112 (2015).
48. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
49. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205-213 (2010).
50. F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207-A220 (2010).
51. H. Y. Lin, Y. Kuo, C. Y. Liao, C. C. Yang, and Y. W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20, A104-A118 (2012).
52. S. Nootchanat, A. Pangdam, R. Ishikawa, K. Wongravee, K. Shinbo, K. Kato, F. Kaneto, S. Ekgasit, and A. Baba, “Grating-coupled surface plasmon resonance enhanced organic photovoltaic devices induced by blu-ray disc recordable and blu-ray disc grating structures,” Nanoscale 9, 4963-4971 (2017).
53. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
54. R. Gillibert, M. Sarkar, J. F. Bryche, R. Yasukuni1, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27, 115202 (2016).
55. W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, and A. V. Zayats, “Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers,” J. Mater. Chem. C. 5, 4075-4084 (2017).
56. K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93, 231111 (2008).
57. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253-1257 (2008).
58. C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles,” Appl. Phys. Lett. 98, 051106 (2011).
59. Y. Kuo, W. Y. Chang, H. S. Chen, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with a radiating dipole near an Ag nanoparticle embedded in GaN,” Appl. Phys. Lett. 102, 161103 (2013).
60. H. S. Chen, C. P. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102, 041108 (2013).
61. C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842-A856 (2014).
62. C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105, 101106 (2014).
63. C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23, 8150-8161 (2015).
64. Y. Kuo, C. H. Lin, H. S. Chen, C. Hsieh, C. G. Tu, P. Y. Shih, C. H. Chen, C. H. Liao, C. Y. Su, Y. F. Yao, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode-experimental and numerical studies,” Jap. J. Appl. Phys. 54, 02BD01 (2015).
65. C. H. Lin, C. G. Tu, Y. F. Yao, S. H. Chen, C. Y. Su, H. T. Chen, Y. W. Kiang, and C. C. Yang, “High modulation bandwidth of a light-emitting diode with surface plasmon coupling,” IEEE Trans. Electron Dev. 63, 3989-3995 (2016).
66. C. Y. Su, C. H. Lin, Y. F. Yao, W. H. Liu, M. Y. Su, H. C. Chiang, M. C. Tsai, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode,” Opt. Express 25, 21526-21536 (2017).
67. C. A. Robertson, D. Hawkins Evans, H. Abrahamse, “Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT,” Journal of Photochemistry and Photobiology B: Biology 96, 1-8 (2009).
68. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991).
69. W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Simulation study on light color conversion enhancement through surface plasmon coupling,” Opt. Express 27, A629-A642 (2019).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74372-
dc.description.abstract金屬奈米顆粒的表面電漿子耦合能增強接合到顆粒表面的光敏劑吸收效率,增加活性氧的產生效率,進而提升光動力療法的療效。然而,表面電漿耦合同時也會增強光敏劑的放光效率,因能量損失而降低活性氧的產生效能。為了瞭解在表面電漿子耦合下,光敏劑吸收的最大化,與放光的最小化條件,我們建構了一套數值模型,模擬金奈米棒在表面電漿耦合效應下,接合在奈米棒表面的光敏劑AlPcS之吸收與放光行為。我們設定吸收與放光偶極子為兩個獨立的二階系統,來描述光敏劑的吸收與放光行為。模擬得到的躍遷比例(歸一化的放射功率)可以顯示,表面電漿子耦合使光敏劑吸收與放光增加的行為。我們利用數值計算研究躍遷比率與歸一化放光功率,和金奈米棒的幾何形狀、光敏劑與奈米棒表面的最短距離,以及光敏劑在不同方位角之間的相互關係,以瞭解表面電漿子耦合效應。zh_TW
dc.description.abstractAlthough surface plasmon (SP) coupling of a metal nanoparticle (NP) can enhance the absorption of a photosensitizer linked onto the NP for increasing the generation efficiency of reactive oxygen species (ROS) and hence photodynamic therapy effectiveness, SP coupling can also enhance the emission efficiency of the photosensitizer for causing energy loss such that the ROS generation efficiency is reduced. To understand the possibility of maximizing photosensitizer absorption and minimizing its emission through SP coupling at the same time, we build numerical algorithms for simulating the SP coupling effects of an Au nanorod (NR) on the absorption and emission behaviors of a photosensitizer, AlPcS, linked onto the Au NR. We use an absorbing dipole and a radiating dipole with individual two-level systems to describe the absorption and emission behaviors of the photosensitizer. The population ratio (normalized radiated power) is evaluated to demonstrate the enhancement of photosensitizer absorption (emission) through SP coupling. The variations of population ratio and normalized radiated power with the changes of Au NR geometry, the shortest distance between photosensitizer and Au NR surface, and the polar and azimuthal positions of photosensitizer are numerically investigated for understanding the SP coupling effect.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:32:17Z (GMT). No. of bitstreams: 1
ntu-108-R05941015-1.pdf: 4612599 bytes, checksum: ec4ea615a76ffd8affa9dd3686f5106d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsContents
口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
Chapter 1 Introduction 1
1.1 Photodynamic therapy and photosensitizer 1
1.2 Gold nanoparticle for inducing localized surface plasmon resonance 2
1.3 Surface plasmon coupling for enhancing emission and absorption 4
1.4 Research motivations 5
1.5 Thesis structure 5
Chapter 2 Simulation Geometry and Method 7
2.1 Photosensitizer 7
2.2 Gold nanorod 8
2.3 Simulation geometry 9
2.4 Simulation method and procedure 10
Chapter 3 Wavelength-dependent Behaviors of Dipole Absorption and Radiation 22
3.1 Wavelength-dependent behaviors of dipole absorption 22
3.2 Wavelength-dependent behaviors of dipole radiation 23
Chapter 4 Wavelength-dependent Behaviors of Dipole Absorption and Radiation 32
4.1 Dependencies of photosensitizer absorption and radiation on metal nanoparticle geometry 32
4.2 Dependencies of photosensitizer absorption and radiation on photosensitizer position 33
Chapter 5 Conclusions 46
References 47
dc.language.isoen
dc.subject表面電漿子zh_TW
dc.subject光敏劑zh_TW
dc.subject金奈米棒zh_TW
dc.subjectsurface plasmonen
dc.subjectphotosensitizeren
dc.subjectgold nanoroden
dc.title接合至金屬奈米顆粒之光敏劑受表面電漿子共振調控吸收與發光行為的模擬研究zh_TW
dc.titleSimulation Study on Surface Plasmon Resonance Regulated Absorption and Emission Behaviors of Photosensitizer Linked onto a Metal Nanoparticleen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),郭仰(Yang Kuo),吳育任(Yuh-Renn Wu),黃建璋(Jian-Jang Huang)
dc.subject.keyword表面電漿子,光敏劑,金奈米棒,zh_TW
dc.subject.keywordsurface plasmon,photosensitizer,gold nanorod,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201902729
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved