Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7434
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張世宗
dc.contributor.authorYu-En Chiuen
dc.contributor.author邱宇恩zh_TW
dc.date.accessioned2021-05-19T17:43:31Z-
dc.date.available2023-08-21
dc.date.available2021-05-19T17:43:31Z-
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citation1. Taubenberger JK & Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499-522.
2. Krammer F, et al. (2018) Influenza. Nat Rev Dis Primers 4(1):3.
3. Tong S, et al. (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9(10):e1003657.
4. WHO (1980) INFLUENZA NOMENCLATURE. Weekly Epidemiological Record 55 (38):294 - 295.
5. Taubenberger JK (2006) The origin and virulence of the 1918 'Spanish' influenza virus. Proc Am Philos Soc 150(1):86-112.
6. Zepeda-Lopez HM, et al. (2010) Inside the outbreak of the 2009 influenza A (H1N1)v virus in Mexico. PLoS One 5(10):e13256.
7. Song MS, et al. (2010) Evidence of human-to-swine transmission of the pandemic (H1N1) 2009 influenza virus in South Korea. J Clin Microbiol 48(9):3204-3211.
8. Viboud C, et al. (2005) Multinational impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering pandemic. J Infect Dis 192(2):233-248.
9. Chan PK (2002) Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin Infect Dis 34 Suppl 2:S58-64.
10. WHO (2015) Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003-2015.
11. WHO (2017) Human infection with avian influenza A(H7N9) virus – China.
12. Chen CJ, et al. (2010) Differential localization and function of PB1-F2 derived from different strains of influenza A virus. J Virol 84(19):10051-10062.
13. Chen W, et al. (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7(12):1306-1312.
14. Bruns K, et al. (2007) Structural characterization and oligomerization of PB1-F2, a proapoptotic influenza A virus protein. J Biol Chem 282(1):353-363.
15. Chevalier C, et al. (2010) PB1-F2 influenza A virus protein adopts a beta-sheet conformation and forms amyloid fibers in membrane environments. J Biol Chem 285(17):13233-13243.
16. Chevalier C, et al. (2016) Synchrotron Infrared and Deep UV Fluorescent Microspectroscopy Study of PB1-F2 beta-Aggregated Structures in Influenza A Virus-infected Cells. J Biol Chem 291(17):9060-9072.
17. Vidic J, et al. (2016) Amyloid Assemblies of Influenza A Virus PB1-F2 Protein Damage Membrane and Induce Cytotoxicity. J Biol Chem 291(2):739-751.
18. Lowy RJ (2003) Influenza virus induction of apoptosis by intrinsic and extrinsic mechanisms. Int Rev Immunol 22(5-6):425-449.
19. Gibbs JS, Malide D, Hornung F, Bennink JR, & Yewdell JW (2003) The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J Virol 77(13):7214-7224.
20. Yamada H, Chounan R, Higashi Y, Kurihara N, & Kido H (2004) Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. FEBS Lett 578(3):331-336.
21. Yoshizumi T, et al. (2014) Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat Commun 5:4713.
22. Chanturiya AN, et al. (2004) PB1-F2, an influenza A virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes. J Virol 78(12):6304-6312.
23. Henkel M, et al. (2010) The proapoptotic influenza A virus protein PB1-F2 forms a nonselective ion channel. PLoS One 5(6):e11112.
24. Zamarin D, Garcia-Sastre A, Xiao X, Wang R, & Palese P (2005) Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog 1(1):e4.
25. Mazur I, et al. (2008) The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell Microbiol 10(5):1140-1152.
26. Le Goffic R, et al. (2010) Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells. J Immunol 185(8):4812-4823.
27. Varga ZT, Grant A, Manicassamy B, & Palese P (2012) Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential. J Virol 86(16):8359-8366.
28. Pinar A, et al. (2017) PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome. J Biol Chem 292(3):826-836.
29. Conenello GM, Zamarin D, Perrone LA, Tumpey T, & Palese P (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3(10):1414-1421.
30. Conenello GM, et al. (2011) A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J Virol 85(2):652-662.
31. McAuley JL, et al. (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2(4):240-249.
32. McAuley JL, et al. (2010) PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology. PLoS Pathog 6(7):e1001014.
33. Alymova IV, et al. (2011) Immunopathogenic and antibacterial effects of H3N2 influenza A virus PB1-F2 map to amino acid residues 62, 75, 79, and 82. J Virol 85(23):12324-12333.
34. Zamarin D, Ortigoza MB, & Palese P (2006) Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol 80(16):7976-7983.
35. Alymova IV, et al. (2014) A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. J Virol 88(1):503-515.
36. Cheng YY, Yang SR, Wang YT, Lin YH, & Chen CJ (2017) Amino Acid Residues 68-71 Contribute to Influenza A Virus PB1-F2 Protein Stability and Functions. Front Microbiol 8:692.
37. Mitzner D, et al. (2009) Phosphorylation of the influenza A virus protein PB1-F2 by PKC is crucial for apoptosis promoting functions in monocytes. Cell Microbiol 11(10):1502-1516.
38. Kosik I, et al. (2015) The ubiquitination of the influenza A virus PB1-F2 protein is crucial for its biological function. PLoS One 10(4):e0118477.
39. Peters JM, Franke WW, & Kleinschmidt JA (1994) Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269(10):7709-7718.
40. Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29 Suppl 1:3-9.
41. Bedford L, Paine S, Sheppard PW, Mayer RJ, & Roelofs J (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 20(7):391-401.
42. Hwang J, Winkler L, & Kalejta RF (2011) Ubiquitin-independent proteasomal degradation during oncogenic viral infections. Biochim Biophys Acta 1816(2):147-157.
43. Jariel-Encontre I, Bossis G, & Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta 1786(2):153-177.
44. Forster A, Masters EI, Whitby FG, Robinson H, & Hill CP (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18(5):589-599.
45. Hung KC (2017) Study of the Relationship between the Novel Avian Influenza A(H7N9) Virus PB1-F2 Protein and Proteasome. Department of Biochemical Science and Technology College of Life Science National Taiwan University Master Thesis.
46. Alymova IV, et al. (2018) Virulent PB1-F2 residues: effects on fitness of H1N1 influenza A virus in mice and changes during evolution of human influenza A viruses. Sci Rep 8(1):7474.
47. Schoenfeld T, Mendez, J., and Storts, D.R. (1995) Effects of Bacterial Strains Carrying the endA1 Genotype on DNA Quality Isolated with Wizard(TM) Plasmid Purification Systems. Promega Notes Magazine 53:12-15.
48. Loyevsky M, et al. (2003) Expression of a recombinant IRP-like Plasmodium falciparum protein that specifically binds putative plasmodial IREs. Mol Biochem Parasitol 126(2):231-238.
49. Kapust RB & Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8(8):1668-1674.
50. Zwickl P, Ng D, Woo KM, Klenk HP, & Goldberg AL (1999) An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 274(37):26008-26014.
51. Lin YC, et al. (2012) Plastidial starch phosphorylase in sweet potato roots is proteolytically modified by protein-protein interaction with the 20S proteasome. PLoS One 7(4):e35336.
52. Buehler J, et al. (2013) Influenza A virus PB1-F2 protein expression is regulated in a strain-specific manner by sequences located downstream of the PB1-F2 initiation codon. J Virol 87(19):10687-10699.
53. Fukuyama S & Kawaoka Y (2011) The pathogenesis of influenza virus infections: the contributions of virus and host factors. Curr Opin Immunol 23(4):481-486.
54. Tscherne DM & Garcia-Sastre A (2011) Virulence determinants of pandemic influenza viruses. J Clin Invest 121(1):6-13.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7434-
dc.description.abstract已知A型流感病毒的PB1-F2蛋白質會調控病毒PB1聚合酶活性,亦會進入宿主細胞粒線體內外膜之間,促使膜電位下降,引發單核球細胞凋亡、調控細胞先天性免疫反應。此外PB1-F2也會抑制干擾素的生成,並增加二次細菌性肺炎感染的風險。然而,來自不同病毒株的PB1-F2在不同宿主細胞中的定位、表現量和功能都有不少差異,因此研究PB1-F2的穩定性、功能及調控機制,也許可以進一步了解不同流感病毒株致病力有所差異的原因。本研究將四株不同亞型的病毒株A/Puerto Rico/8/1934 (H1N1)、A/Udorn/307/1972 (H3N2)、A/Hong Kong/156/1997 (H5N1)、A/Taiwan/01/2013 (H7N9)的PB1-F2基因於HEK293細胞中表現時,發現其表現量有極大的差異,且皆會因加入蛋白酶體抑制劑MG132而有不同程度的上升,表示PB1-F2會受到蛋白酶體降解系統的調控。將四株不同亞型病毒株的PB1-F2進行部分胺基酸序列互換時,發現2、10、11、14和68-71會影響H1N1、H3N2和H7N9 PB1-F2在HEK293細胞中的穩定性,然而對於H5N1則沒有顯著影響。此外,細胞影像的結果顯示PB1-F2 68-71的胺基酸序列會影響PB1-F2在細胞中的分佈位置,其中ILVF有粒線體標的功能,會使PB1-F2位於粒線體。為了探究PB1-F2的穩定性是否受到泛素化的調控,將四株病毒株之PB1-F2上的所有離胺酸突變為精胺酸後,發現H1N1、H3N2、H7N9之PB1-F2皆因泛素化位點的突變而提升的在細胞中的穩定性,而H5N1 PB1-F2的穩定性則沒有因突變而有顯著提升,因此可知PB1-F2可經由泛素依賴型 (dependent) 或不依賴型 (independent) 路徑而被蛋白酶體降解。此外,分別將PA28α、PA28β或PA28γ與PB1-F2共轉染至HEK293細胞中,四株病毒株的PB1-F2的表現量皆有非常明顯的下降,顯示PA28可以促進PB1-F2的降解。zh_TW
dc.description.abstractInfluenza A virus (IAV) protein Polymerase basic 1-frame 2 (PB1-F2) regulates viral polymerase activity, induces apoptosis in host immune cells, interferes the host innate immune response and enhances the pathogenesis of secondary bacterial pneumonia. Moreover, PB1-F2 derived from different virus strains may perform different functions, expression levels and cellular localization, leading to their various strain-specific virulence in host cells. Therefore, studying the principles which determine the stability, functions and regulation mechanisms of PB1-F2 might help us know further about the pathogenesis of various influenza A virus strains. In this study, HEK293 cells expressed PB1-F2 from four IAV strains (A/Puerto Rico/8/1934 (H1N1), A/Udorn/307/1972 (H3N2), A/Hong Kong/156/1997 (H5N1), A/Taiwan/01/2013 (H7N9)) in extremely various expression levels. Moreover, the expression levels of PB1-F2 were increased upon MG132 treatment and showed different sensitivity to MG132, indicating that PB1-F2 may undergo proteasome-mediated degradation. Swapping of equivalent amino acid residues 2, 10, 11, 14, and 68-71 of PB1-F2 among these four IAV strains may alter their protein stability. Moreover, the cell images showed that amino acid residues 68-71 might modulate the localization of PB1-F2. In addition, PB1-F2 residues I68, L69, V70, and F71 are mitochondrial targeting sequence. In order to clarify whether PB1-F2 stability is ubiquitination-mediated, all of the lysine residues of PB1-F2 were mutated to arginine residues to inhibit the possible ubiquitination of PB1-F2. It is found that the expression levels of H1N1, H3N2 and H7N9 PB1-F2 were greatly increased, but H5N1 PB1-F2 did not increase significantly, indicating that the ubiquitin-dependent and ubiquitin-independent degradation pathway are all involved in regulation of PB1-F2 stability. Furthermore, the expression levels of PB1-F2 were markedly decreased while the proteasome activator PA28α/PSEM1, PA28β/PSME2, or PA28γ/PSME3 was co-transfected with PB1-F2, suggested that PA28 can promote degradation of PB1-F2.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:43:31Z (GMT). No. of bitstreams: 1
ntu-107-R05b22035-1.pdf: 4015700 bytes, checksum: e76175bc2bf02ffb3335be2abedda6b9 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄 I
摘要 1
ABSTRACT 2
縮寫表 3
第一章 緒論 4
1.1 A型流感病毒 4
1.1.1 H1N1病毒 4
1.1.2 H3N2病毒 4
1.1.3 H5H1病毒 5
1.1.4 H7N9病毒 5
1.2 Polymerase basic protein 1-frame 2 (PB1-F2) 5
1.2.1 PB1-F2的發現 5
1.2.2 PB1-F2的蛋白質結構 6
1.2.3 PB1-F2參與細胞凋亡機制 6
1.2.4 PB1-F2與PB1結合調控RdRP聚合酶活性 7
1.2.5 PB1-F2調控細胞先天性免疫功能 7
1.2.6 PB1-F2提升宿主二次性細菌感染的機率 8
1.2.7 PB1-F2的穩定度 8
1.2.8 PB1-F2依賴蛋白酶體的降解機制 8
1.2.9 PB1-F2的磷酸化與泛素化 9
1.3 蛋白酶體降解機制 10
1.3.1 泛素依賴型降解路徑 10
1.3.2 泛素不依賴型降解路徑 10
1.3.3 蛋白酶體活化調節因子PA28 10
1.4研究動機 11
第二章 材料與方法 13
2.1 PB1-F2與PA28基因來源 13
2.2 大腸桿菌菌株 13
2.2.1 大腸桿菌DH5α 13
2.2.2 大腸桿菌BL21 (DE3) 13
2.2.3 大腸桿菌Rosetta (DE3) 14
2.3 人類細胞株 14
2.4 PB1-F2重組蛋白質表現質體建構 14
2.4.1 PB1-F2位點互換突變株建構 15
2.4.2 PB1-F2泛素化位點突變株建構 15
2.5 重組蛋白質表現 16
2.5.1 PB1-F2重組蛋白質表現 16
2.5.2 20S突變蛋白酶體表現 16
2.6 重組蛋白質純化 16
2.6.1 PB1-F2重組蛋白質純化 16
2.6.2 20S DM蛋白酶體純化 17
2.6.3 蛋白質脫鹽與濃縮 17
2.6.4 蛋白質定量 18
2.7 細胞培養 18
2.8 細胞轉染 18
2.9 細胞樣本製備 19
2.10 免疫染色分析 19
2.11 胞外20S蛋白酶體降解試驗 19
2.12 免疫螢光染色與雷射共軛焦掃描顯微鏡 20
第三章 結果 21
3.1 PB1-F2與20S蛋白酶體之胞外試驗 21
3.2 PB1-F2在HEK293細胞中的表現量、穩定性以及降解機制 21
3.2.1 PB1-F2在HEK293細胞中的表現量 21
3.2.2 PB1-F2在HEK293細胞中的穩定性 21
3.2.3 PB1-F2突變株在HEK293細胞中的表現量和穩定性 22
3.2.4 PB1-F2之泛素化位點突變增加其在HEK293細胞中的穩定性 23
3.2.5 PA28參與PB1-F2的降解 23
3.2.6 PB1-F2於細胞中的分佈位置 24
第四章 討論 26
4.1 PB1-F2與20S蛋白酶體之胞外試驗 26
4.2 PB1-F2重組蛋白質在細胞內的表現量和穩定性 26
4.3 PB1-F2重組蛋白質之胺基酸序列影響其在細胞內的表現量和穩定性 27
4.4 PB1-F2重組蛋白質在細胞內的降解機制 27
4.5 胺基酸序列影響PB1-F2在細胞中的分佈位置 29
4.6 A型流感病毒株之致病力與PB1-F2之穩定度 29
第五章 總結 31
參考文獻 33
圖與表 37
附錄 51
dc.language.isozh-TW
dc.titleA型流感病毒PB1-F2蛋白質於人類細胞株之穩定性與蛋白酶體降解效率之研究zh_TW
dc.titleInvestigation of the Stability and Proteasome Degradation Efficiency of Influenza A Virus PB1-F2 Proteins from Different Viral Strains in Human Cell Linesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳慧文,張麗冠,林翰佳
dc.subject.keyword流感病毒,PB1-F2,蛋白?體,PA28,zh_TW
dc.subject.keywordInfluenza,PB1-F2,Proteasome,PA28/PSME,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201803869
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2023-08-21-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf3.92 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved