Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74337
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成
dc.contributor.authorChiao-Yu Yangen
dc.contributor.author楊喬宇zh_TW
dc.date.accessioned2021-06-17T08:30:31Z-
dc.date.available2022-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation[1] Okamura, A.M., M.J. Mataric, and H.I. Christensen, Medical and health-care robotics. IEEE Robotics & Automation Magazine, 2010. 17(3): p. 26-37.
[2] Shibata, T. and K. Wada, Robot therapy: a new approach for mental healthcare of the elderly–a mini-review. Gerontology, 2011. 57(4): p. 378-386.
[3] Wu, Y.-H., et al., Robotic agents for supporting community-dwelling elderly people with memory complaints: Perceived needs and preferences. Health Informatics Journal, 2011. 17(1): p. 33-40.
[4] El Haj, M. and R.P. Kessels, Context memory in Alzheimer's disease. Dementia and geriatric cognitive disorders extra, 2013. 3(1): p. 342-350.
[5] El Haj, M. and P. Antoine, Context Memory in Alzheimer’s Disease: The “Who, Where, and When”. Archives of Clinical Neuropsychology, 2017. 33(2): p. 158-167.
[6] Wagenaar, W.A., My memory: A study of autobiographical memory over six years. Cognitive psychology, 1986. 18(2): p. 225-252.
[7] Lee, M.L. and A.K. Dey. Providing good memory cues for people with episodic memory impairment. in Proceedings of the 9th international ACM SIGACCESS conference on Computers and accessibility. 2007. ACM.
[8] Caprani, N., J. Greaney, and N. Porter, A review of memory aid devices for an ageing population. PsychNology Journal, 2006. 4(3): p. 205-243.
[9] Lee, M.L. and A.K. Dey. Lifelogging memory appliance for people with episodic memory impairment. in Proceedings of the 10th international conference on Ubiquitous computing. 2008. ACM.
[10] Huang, H.-H., et al. Toward a memory assistant companion for the individuals with mild memory impairment. in 2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing. 2012. IEEE.
[11] Hodges, S., et al. SenseCam: A retrospective memory aid. in International Conference on Ubiquitous Computing. 2006. Springer.
[12] Wilson, B.A., et al., Evaluation of NeuroPage: a new memory aid. Journal of Neurology, Neurosurgery & Psychiatry, 1997. 63(1): p. 113-115.
[13] Yim, H., S.J. Dennis, and V.M. Sloutsky, The development of episodic memory: Items, contexts, and relations. Psychological Science, 2013. 24(11): p. 2163-2172.
[14] Panoz-Brown, D., et al., Rats remember items in context using episodic memory. Current Biology, 2016. 26(20): p. 2821-2826.
[15] Sato, N. and Y. Yamaguchi, Simulation of human episodic memory by using a computational model of the hippocampus. Advances in Artificial Intelligence, 2010. 2010: p. 4.
[16] Atkinson, R.C. and R.M. Shiffrin, Human memory: A proposed system and its control processes, in Psychology of learning and motivation. 1968, Elsevier. p. 89-195.
[17] Baddeley, A.D. and G. Hitch, Working memory, in Psychology of learning and motivation. 1974, Elsevier. p. 47-89.
[18] Carpenter, G.A. and S. Grossberg, The ART of adaptive pattern recognition by a self-organizing neural network. IEEE computer, 1988. 21(3): p. 77-88.
[19] Hintzman, D.L., MINERVA 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers, 1984. 16(2): p. 96-101.
[20] Hintzman, D.L., Human learning and memory: Connections and dissociations. Annual review of psychology, 1990. 41(1): p. 109-139.
[21] Kelly, M.A. and R.L. West. A framework for computational models of human memory. in AAAI Fall Symposium, A Standard Model of Mind: AAAI Technical Report. 2017.
[22] Kelly, M.A., D. Mewhort, and R.L. West, The memory tesseract: Mathematical equivalence between composite and separate storage memory models. Journal of Mathematical Psychology, 2017. 77: p. 142-155.
[23] Tresp, V., et al., Learning with memory embeddings. arXiv preprint arXiv:1511.07972, 2015.
[24] Yang, Z., et al. A computation memory model with human memory features for autonomous virtual humans. in 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). 2010. IEEE.
[25] Ebbinghaus, H., Memory: A contribution to experimental psychology. Annals of neurosciences, 2013. 20(4): p. 155.
[26] Tan, A.-H., G.A. Carpenter, and S. Grossberg. Intelligence through interaction: Towards a unified theory for learning. in International Symposium on Neural Networks. 2007. Springer.
[27] Wang, W., et al. A self-organizing approach to episodic memory modeling. in The 2010 International Joint Conference on Neural Networks (IJCNN). 2010. IEEE.
[28] Chang, P.-H. and A.-H. Tan. Encoding and Recall of Spatio-Temporal Episodic Memory in Real Time. in IJCAI. 2017.
[29] Park, G.-M. and J.-H. Kim. Deep adaptive resonance theory for learning biologically inspired episodic memory. in 2016 international joint conference on neural networks (IJCNN). 2016. IEEE.
[30] Ho, W., et al., Episodic memory visualization in robot companions providing a memory prosthesis for elderly users. Assistive Technology, 2013.
[31] Saez-Pons, J., D.S. Syrdal, and K. Dautenhahn, What has happened today? Memory visualisation of a robot companion to assist user’s memory. Journal of Assistive Technologies, 2015. 9(4): p. 207-218.
[32] Wieser, I., et al. A Robotic Home Assistant with Memory Aid Functionality. in Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz). 2016. Springer.
[33] Wu, C., et al. Watch-Bot: Unsupervised learning for reminding humans of forgotten actions. in 2016 IEEE International Conference on Robotics and Automation (ICRA). 2016. IEEE.
[34] Datta, C., et al. An interactive robot for reminding medication to older people. in 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). 2012. IEEE.
[35] Martin, J.H. and D. Jurafsky, Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. 2009: Pearson/Prentice Hall Upper Saddle River.
[36] Auer, S., et al., Dbpedia: A nucleus for a web of open data, in The semantic web. 2007, Springer. p. 722-735.
[37] Singhal, A., Introducing the knowledge graph: things, not strings. Official google blog, 2012. 5.
[38] Tulving, E., Episodic and semantic memory. Organization of memory, 1972. 1: p. 381-403.
[39] Brewer, W.F. and J.R. Pani, The structure of human memory. Center for the Study of Reading Technical Report; no. 321, 1984.
[40] Gazzaniga, M. and R.B. Ivry, Cognitive Neuroscience: The Biology of the Mind: Fourth International Student Edition. 2013: WW Norton.
[41] Gluck, M.A., E. Mercado, and C.E. Myers, Learning and memory: from brain to behavior. Aprendizaje y memoria: del cerebro al comportamiento. 2009.
[42] Baddeley, A., The episodic buffer: a new component of working memory? Trends in cognitive sciences, 2000. 4(11): p. 417-423.
[43] Conway, M.A., Episodic memories. Neuropsychologia, 2009. 47(11): p. 2305-2313.
[44] Greenberg, D.L. and M. Verfaellie, Interdependence of episodic and semantic memory: evidence from neuropsychology. Journal of the International Neuropsychological society, 2010. 16(5): p. 748-753.
[45] Liu, H. and P. Singh, ConceptNet—a practical commonsense reasoning tool-kit. BT technology journal, 2004. 22(4): p. 211-226.
[46] Koller, D. and N. Friedman, Probabilistic graphical models: principles and techniques. 2009: MIT press.
[47] Lloyd, S., Least squares quantization in PCM. IEEE transactions on information theory, 1982. 28(2): p. 129-137.
[48] Ng, A.Y., M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. in Advances in neural information processing systems. 2002.
[49] Von Luxburg, U., A tutorial on spectral clustering. Statistics and computing, 2007. 17(4): p. 395-416.
[50] Lucińska, M. and S.T. Wierzchoń. Spectral clustering based on k-nearest neighbor graph. in IFIP International Conference on Computer Information Systems and Industrial Management. 2012. Springer.
[51] Zeng, M., et al. Convolutional neural networks for human activity recognition using mobile sensors. in 6th International Conference on Mobile Computing, Applications and Services. 2014. IEEE.
[52] Zhou, B., et al. Temporal relational reasoning in videos. in Proceedings of the European Conference on Computer Vision (ECCV). 2018.
[53] Amos, B., B. Ludwiczuk, and M. Satyanarayanan, Openface: A general-purpose face recognition library with mobile applications. CMU School of Computer Science, 2016. 6.
[54] Schroff, F., D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
[55] Redmon, J., et al. You only look once: Unified, real-time object detection. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[56] Eliasmith, C., How to build a brain: A neural architecture for biological cognition. 2013: Oxford University Press.
[57] Stewart, T., F.-X. Choo, and C. Eliasmith. Spaun: A perception-cognition-action model using spiking neurons. in Proceedings of the Annual Meeting of the Cognitive Science Society. 2012.
[58] Levy, S.D. and R. Gayler. Vector symbolic architectures: A new building material for artificial general intelligence. in Proceedings of the 2008 Conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference. 2008. IOS Press.
[59] Kanerva, P. The spatter code for encoding concepts at many levels. in International Conference on Artificial Neural Networks. 1994. Springer.
[60] Plate, T.A., Holographic reduced representations. IEEE Transactions on Neural networks, 1995. 6(3): p. 623-641.
[61] Luhn, H.P., A statistical approach to mechanized encoding and searching of literary information. IBM Journal of research and development, 1957. 1(4): p. 309-317.
[62] Sparck Jones, K., A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 1972. 28(1): p. 11-21.
[63] Bertsekas, D.P., et al., Dynamic programming and optimal control. Vol. 1. 1995: Athena scientific Belmont, MA.
[64] Bertsekas, D.P. and J.N. Tsitsiklis, Neuro-dynamic programming. Vol. 5. 1996: Athena Scientific Belmont, MA.
[65] Mine, H. and S. Osaki, Markovian decision processes. 1970.
[66] Williams, R.J., Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 1992. 8(3-4): p. 229-256.
[67] Watkins, C.J.C.H., Learning from delayed rewards. 1989.
[68] Bellman, R., A Markovian decision process. Journal of Mathematics and Mechanics, 1957: p. 679-684.
[69] Monfort, M., et al., Moments in time dataset: one million videos for event understanding. IEEE transactions on pattern analysis and machine intelligence, 2019.
[70] Redmon, J. and A. Farhadi, Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
[71] Nengo SPA. April, 26th, 2019 [cited 2019 May, 2nd]; Available from: https://www.nengo.ai/nengo-spa/index.html.
[72] Google Word2Vec. July, 30th, 2013 [cited 2019 May, 2nd]; Available from: https://code.google.com/archive/p/word2vec/.
[73] Bellman, R. and R. Kalaba, On adaptive control processes. IRE Transactions on Automatic Control, 1959. 4(2): p. 1-9.
[74] Jones, K.S., S. Walker, and S.E. Robertson, A probabilistic model of information retrieval: development and comparative experiments: Part 2. Information processing & management, 2000. 36(6): p. 809-840.
[75] Frank, E. and R.R. Bouckaert. Naive bayes for text classification with unbalanced classes. in European Conference on Principles of Data Mining and Knowledge Discovery. 2006. Springer.
[76] Shannon, C.E., A mathematical theory of communication. Bell system technical journal, 1948. 27(3): p. 379-423.
[77] Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 1987. 20: p. 53-65.
[78] Brooke, J., SUS-A quick and dirty usability scale. Usability evaluation in industry, 1996. 189(194): p. 4-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74337-
dc.description.abstract記憶衰退為現代社會常見文明病之一,其中又以老年長者為高罹患族群,時常 伴隨失智症、阿茲海默症等疾病發生,對於社會造成逐漸加重的醫療及照護成本支 出。本論文中提出以一腦啟發式的自我組織情節記憶模型搭配智慧機器人 Pepper ,能於居家環境中透過視覺與聽覺資料接收日常生活事件並提供記憶輔助,其中接 收之事件著重於人、事、時、地、物等五個面向的語義架構用以歸納整理和儲存於 記憶模型之中。本文提出的記憶模型為一啟發於融合式自適應性共振理論(Fusion adaptive resonance theory, Fusion ART)階層式的圖模式系統,針對情節記憶模擬 人腦記憶構造之計算模型,並以一工作記憶暫存區、語意元素(Semantic elements) 層、情節事件層以及事件模板層組成。此系統利用語義指標(Semantic pointers) 的方式編碼記憶中的元素及計算其彼此間的相對距離,同時利用動態時間修正 (Dynamic time warping)和譜分群(Spectral clustering)的方式分類儲存之記憶, 再用詞頻率與逆向文件頻率(TF-IDF)的概念概述各個分群。當需要提供記憶輔助 時,機器人能從使用者的問句之中提取問句目標以及線索之關鍵字詞,並用於分析 及依據其相關面向重新分類已儲存之記憶。同時,透過樸素貝氏分類器(Naïve Bayes classifier),記憶模型可用關鍵字詞找出具最大機率之最佳符合記憶簇以及其 包含之語意元素,並由機器人以對話形式將顯著語意元素提供給使用者以潛在地 刺激使用者對於該相關事件的再次連結。此外,透過強化學習(Reinforcement learning),最終機器人能夠從經驗中學習何種記憶提示對於不同的事件類別對於使 用者來說是最有效的。實驗顯示提出之記憶模型的可操作性並同時具備穩定性和 適應性;再者,人機互動的實驗中顯示照護機器人可於此記憶模型建構的知識基礎 上進行穩健的記憶輔助服務,而在接受本研究提出的記憶輔助後,於 99%的信賴 區間下受試者回憶事件的能力有顯著性的提升。zh_TW
dc.description.abstractThis work shows a household caring robot with a brain-inspired episodic memory model, which provides memory assistance and tackles the modern public issues of memory impairment among individuals and increasing human resource expenditure on elder caring using a humanoid robot, Pepper. The robot is able to visually and auditorily observe user’s daily activities based on five aspects, i.e. people, activities, time, locations and objects, which will then be aggregated and stored as episodes in the self-organizing memory model. The proposed memory model is a hierarchical graph-based system inspired by fusion adaptive resonance theory (Fusion ART) simulating a computational model of the human brain targeting episodic memories, comprising a working memory buffer, semantic element layer, episodic event layer, and event class layer. The system uses semantic pointers to encode event elements and calculate the relative distances among them, while a modified spectral clustering with dynamic time warping is implemented to merge and categorize the observed memories, where clusters are summarized with the concept of Term Frequency - Inverse Document Frequency (TF-IDF). When providing memory assistance, the robot is able to spot the keywords of the query target and the hints in the query issued from the user, which are later used for analysis and memory re-classification in related aspects. Furthermore, with naïve Bayes classifier, the model finds the best matching memory cluster and its semantic elements with the highest probability associated with the keywords in the query. Next, accordingly, the robot provides the memory cue with the observed salient semantic elements regarded as context to the user through dialog, which potentially may stimulate the user’s recall of the target event related to the query. Besides, using reinforcement learning, the robot eventually learns what kinds of memory cues are the most effective supports to the user for each type of event from experience. The experiments show the feasibility of the proposed model, which could handle episodic events with elasticity and stability. Moreover, from the HRI experiment, the robot is able to provide robust memory assistance from the knowledge of the memory model, with 99% confidence intervals the participants’ mean recall percentage of the events increases significantly after receiving the proposed memory assistance.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:30:31Z (GMT). No. of bitstreams: 1
ntu-108-R06944022-1.pdf: 34209854 bytes, checksum: b23471e576cc8979f9193acd4dde2e3c (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Related Works 4
1.3.1 Computational Model of Human Memory 4
1.3.2 Memory Assistance Robots 10
1.3.3 Comparison 12
1.3.4 Question Answering System 14
1.4 Objectives and Contributions 16
1.5 Thesis Organization 17
Chapter 2 Preliminaries 18
2.1 Organization of Human Memory 18
2.1.1 Human Memory Structure 18
2.1.2 Memory Models 22
2.2 Fusion Adaptive Resonance Theory (Fusion ART) 23
2.3 Graphical Model 26
2.3.1 Forms of Graphical Model 26
2.3.2 Clustering and Unsupervised Learning 29
2.4 Human Activity Recognition 34
2.4.1 Activity Recognition from Video 34
2.4.2 Face Recognition 35
2.4.3 Object Recognition 36
2.5 Semantic Pointer Architecture 37
2.6 Information Retrieval Techniques 39
2.6.1 TF-IDF Weighting 39
2.6.2 Multinomial Naïve Bayes Classifier 41
2.7 Reinforcement Learning 42
2.7.1 Introduction to Reinforcement Learning 42
2.7.2 Q-Learning 44
Chapter 3 Self-Organizing Episodic Memory Robotic System 45
3.1 System Overview 45
3.2 Event Observation and Sensory Memory 47
3.3 Working Memory 51
3.3.1 Semantic Pointer Vocabularies 53
3.3.2 Episodic Memory Encoding 53
3.4 Long-Term Memory Storage 56
3.5 Semantic Element Layer 59
3.5.1 Semantic Element Node 59
3.5.2 Weight Updating Function 59
3.6 Episodic Event Layer 61
3.6.1 Event Node 61
3.6.2 Hyperlink and Similarity Calculation 62
3.6.3 Event Merging 66
3.6.4 Event Clustering 69
3.6.5 Cluster Summary 70
3.7 Event Class Layer and Episodic Memory Assistance 71
3.7.1 Query Extraction and Memory Matching 72
3.7.2 Memory Cue Generation 73
3.7.3 Event Class Layer 75
3.7.4 Robot Dialog System 75
3.7.5 Cue Effectiveness Learning 77
Chapter 4 Evaluation 79
4.1 System Evaluation 79
4.2 Memory Clustering Evaluation 82
4.3 Memory Assistance Evaluation and HRI Experiment 85
4.3.1 Experiment Setup 86
4.3.2 Procedure 91
4.3.3 Experiment Results 92
4.3.4 Discussion 99
Chapter 5 Conclusion 104
REFERENCE 107
dc.language.isoen
dc.title基於腦啟發式自我組織情節記憶模型的日常記憶輔助機器人zh_TW
dc.titleA Daily Memory Assistance Robot Based on Brain-Inspired Self-Organizing Episodic Memory Modelen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉素玲,張玉玲,梁庚辰,岳修平
dc.subject.keyword情節記憶輔助,記憶模型,圖模式,照護機器人,強化學習,zh_TW
dc.subject.keywordEpisodic Memory Assistance,Memory Model,Graphical Model,Health Care Robot,Reinforcement Learning,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201903168
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
33.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved