請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74278完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | |
| dc.contributor.author | Jun-Min Wang | en |
| dc.contributor.author | 王竣民 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:27:37Z | - |
| dc.date.available | 2020-08-16 | |
| dc.date.copyright | 2019-08-16 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-12 | |
| dc.identifier.citation | [1] Aitchison, G.D. (1965), “Soil Properties-Shear Strength, and consolidation”, In Proceedings of the 6th International Conference. Soil Mechanics, vol.3,
pp. 318-321. [2] Aitchison, G.D. (1973), “The Quantitative Description of the Stress-Deformation Behaviour of Expansive Soils-Preface to the Set of Papers”, Proceedings of the 3rd International Conference on Expansive Soils, vol.2, pp. 83-88. [3] Bishop, A. W. (1959), ”The Principle of Effective Stress”, Teknisk Ukeblad, vol.106(39), pp. 859-863. [4] Bishop, A.W. and Blight, G.E. (1963), “Some Aspects of Effective Stress in Saturated and Partly Saturated soils”, Geotechnique, vol.13, pp. 177-197. [5] Fredlund, D. G. and Morgenstern, N. R. (1978), “Stress State Variables for Unsaturated Soils”, Journal of the Geotechnical Engineering Division-Asce, vol.104(11), pp. 1415-1416. [6] Fredlund, D.G., Xing, A. and Huang, S. (1994), “Predicting the Permeability for Unsaturated Soils Using the Soil-Water Characteristic Curve”, Canadian Geotechnical Journal, vol.31(3), pp. 521-532. [7] Fredlund, D. G. and Xing, A. Q. (1994), “Equation for the Soil-Water Characteristic Curve”, Canadian Geotechnical Journal, vol.31(6), pp. 1026. [8] Griffiths, D.V. and Lane, P.A. (1999), “Slope Stability Analysis by Finite Elements”, Geotechnique, vol.49(3), pp. 387-403. [9] Griffiths, D. V. and Lu, N. (2005), “Unsaturated Slope Stability Analysis with Steady Infiltration or Evaporation Using Elasto-Plastic Finite Elements”, International Journal for Numerical and Analytical Methods in Geomechanics, vol.29(3), pp. 249-267. [10] Ho, D.Y.F. and Fredlund, D.G. (1982), “Increase in Shear Strength Due to Suction for Two Hong Kong Soils”, Proceedings of Specialty Conference on Engineering and Construction in Tropical and Residual Soil, ASCE, Honolulu, Hl, pp. 263-295. [11] Hamdhan, I. N. and Schweiger, H. F. (2013), “Finite Element Method-Based Analysis of an Unsaturated Soil Slope Subjected to Rainfall Infiltration”, International Journal of Geomechanics, vol.13(5), pp. 653-658. [12] Jennings, J. E. and Burland, J. B. (1962), “Limitations to the Use of Effective Stress in Partly Saturated Soils” Geotechnique, vol.12(2), pp. 125-144. [13] Krahn, J. and Fredlund, D. G. (1972), “On Total, Matric and Osmotic Suction” , Journal Soil Science, vol.114(5), pp. 339-348. [14] Lu, N. and Likos, W. J. (2006), “Suction stress characteristic curve for unsaturated soil”, Journal of Geotechnical and Geoenvironmental Engineering, vol.132(2), pp. 131-142. [15] Lu, N., Godt, J. W. and Wu, D. T. (2010), “A Closed Form Equation for Effective Stress in Unsaturated Soil”, Water resource research, vol.46(5). [16] Leong, E.C. (2016), “Stress State for Unsaturated Soils-Consensus and Controversy”, Indian Geotechnical Conference, IIT Madras, Chennai, India. [17] Richard, B.G. (1966), “The Significance of Moisture Flow and Equilibria in Unsaturated Soils in Relation to the Design of Engineering Structures Built on Shallow Foundation in Australia”, Presented at the Symp., American Society Testing Materials, Atlantic City, N.J. [18] Schnellmann, R., Rahardjo, H. and Schneider, H. R. (2015) “Controlling Parameter for Unsaturated Soil Property Functions: Validated on the Unsaturated Shear Strength”, Canadian Geotechnical Journal, vol.52(3), pp. 374-381. [19] Van Genuchten, M. T. (1980), “A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils”, Soil Science Society of America Journal, vol.44(5), pp. 892-898. [20] Van Genuchten, M. T. and Nielsen, D. R. (1985), “On Describing and Predicting the Hydraulic-Properties of Unsaturated Soils” , Annales Geophysicae, vol.3(5), pp. 615-627. [21] Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E. and Clifton, A. W. (1996), “Model for the prediction of shear strength with respect to soil suction”, Canadian Geotechnical Journal, vol.33(3), pp. 379-392. [22] Vanapalli, S. K., Fredlund, D. G. and Pufahl, D. E. (1999), “The Influence of Soil Structure and Stress History on the Soil-Water Characteristics of a Compacted Till”, Geotechnique, vol.49(2), pp. 143-159. [23] 孔郁斐,周夢佳,宋二祥,楊軍,張龍英,施洪剛和劉劍 (2014),”利用PLAXIS軟件計算考慮降雨的邊坡穩定性”,水利水運工程學報,第3期。 [24] 林宏達、拱祥生、洪銘鴻、余子鳴和蕭新財 (2009),”水庫集水區邊坡崩塌機制及整治策略-子計畫:水庫集水區不飽和土壤邊坡淺層崩塌機制及分析模式之研究”,行政院國家科學委員會補助專題研究計畫期末成果報告。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74278 | - |
| dc.description.abstract | 台灣是全世界數一數二多雨的國家,一年四季皆有豐沛的降雨量,降雨是造成山區坡地災害的主因之一,近年來在做邊坡穩定性分析時已經將非飽和土壤的行為納入降雨入滲分析中,非飽和土壤存在著基質吸力,基質吸力為邊坡提供抵抗降雨入滲後產生的下滑力,考慮基質吸力後,分析時邊坡的安全係數會比沒有考慮基質吸力的安全係數還高。
本研究使用有限元素分析軟體PLAXIS 2D進行降雨入滲分析,探討邊坡之坡度、vG模型的擬和參數、滲透係數和降雨事件對非飽和邊坡之影響,利用基質吸力、安全係數、破壞滑動面等之間的關係判斷不同土壤參數各個行為的差異。研究結果顯示,浸潤帶是邊坡穩定性分析重要的因素,浸潤帶的產生讓邊坡表層基質吸力迅速降低,土壤的抗剪強度降低,容易造成邊坡滑動。在降雨強度低又長期降雨時,若滲透係數較大,雨水滲入土層後會流往更深層土壤並使地下水位提高。 | zh_TW |
| dc.description.abstract | Taiwan is a rainy country in the world. There is abundant rainfall all year. Rainfall is one of the main causes of mountain slope disasters. In recent years, the behavior of unsaturated soil has been incorporated into the slope stability analysis. The matric suction is present in the unsaturated soil, and it provides force to resist the sliding force. After consider matric suction, the factor of safety will be higher than that without considering the matric suction.
In this study, PLAXIS 2D was used for slope stability analysis to investigate the influence of slope, fitting parameters of vG model, permeability coefficient and rainfall events on unsaturated slopes. Using the relationship between of the matric suction, factor of safety and failure surface to judge the difference of each soil parameters. According to the results, the wetting band is an important factor, it makes the matric suction of surface soil decrease rapidly, and the shear strength of soil is also decreases, which easily causes the slope to failure. At the rainfall event 3, if the permeability coefficient is large, the rainwater will flow to deeper soil and raise the groundwater level, and the saturation of the wetting band will be low relatively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:27:37Z (GMT). No. of bitstreams: 1 ntu-108-R06521101-1.pdf: 9554772 bytes, checksum: 189a51b3bde95436264883e68e4bf208 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 …………………………………………………………………………………I
論文摘要 ……………………………………………………………………………II Abstract ………………………………………………………………………………III 目錄 …………………………………………………………………IV 圖目錄 ……………………………………………………………………………VI 表目錄 ……………………………………………………………………………IX 附錄圖目錄 ……………………………………………………………………………X 第一章 緒論 ……………………………………………………………………………1 1.1 研究動機與目的 ……………………………………………………………………1 1.2 研究內容 ……………………………………………………………………………1 1.3 論文架構 ……………………………………………………………………………2 1.3.1 流程圖 ……………………………………………………………………………3 第二章 文獻回顧 ………………………………………………………………………4 2.1 非飽和土壤 …………………………………………………………………………4 2.1.1 非飽和邊坡 ………………………………………………………………………4 2.1.2 非飽和土壤的組成 ………………………………………………………………4 2.1.3 非飽和土壤的吸力 ………………………………………………………………5 2.1.4 非飽和土壤的應力狀態…………………………………………………………7 2.1.5 非飽和土壤的剪力強度…………………………………………………………9 2.1.6 非飽和土壤的滲透係數、SWCC及SSCC …………………………………13 2.2 有限元素強度折減法 ……………………………………………………………17 第三章 驗證分析 ……………………………………………………………………19 3.1 驗證案例一 ………………………………………………………………………19 3.2 驗證案例二 ………………………………………………………………………22 第四章 數值分析模擬 ………………………………………………………………25 4.1 數值分析軟體 ……………………………………………………………………25 4.2 邊坡模型建置 ……………………………………………………………………25 4.2.1 幾何模型 ………………………………………………………………………25 4.2.2 材料參數 ………………………………………………………………………26 4.2.3 降雨事件 ………………………………………………………………………30 4.2.4 邊界條件設定 …………………………………………………………………31 4.2.4 初始狀態分析 …………………………………………………………………33 第五章 分析結果 ……………………………………………………………………40 5.1 分析結果 …………………………………………………………………………40 5.1.1 降雨事件一 …………………………………………………………………41 5.1.2 降雨事件二 …………………………………………………………………54 5.1.3 降雨事件三 …………………………………………………………………67 第六章 結論與建議 …………………………………………………………………89 6.1 結論 ……………………………………………………………………89 6.2 建議 ……………………………………………………………………90 參考文獻 …………………………………………………………………91 附錄一 …………………………………………………………………94 附錄二 …………………………………………………………………110 附錄三 ………………………………………………………………126 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非飽和土壤 | zh_TW |
| dc.subject | PLAXIS 2D | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 邊坡穩定性分析 | zh_TW |
| dc.subject | slope stability analysis | en |
| dc.subject | finite element method | en |
| dc.subject | unsaturated soil | en |
| dc.subject | PLAXIS 2D | en |
| dc.title | 降雨引致之非飽和邊坡穩定性分析 | zh_TW |
| dc.title | Rainfall Induced Unsaturated Slope Stability Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊國鑫,李安叡,張光宗,洪汶宜 | |
| dc.subject.keyword | 邊坡穩定性分析,有限元素法,非飽和土壤,PLAXIS 2D, | zh_TW |
| dc.subject.keyword | slope stability analysis,finite element method,unsaturated soil,PLAXIS 2D, | en |
| dc.relation.page | 138 | |
| dc.identifier.doi | 10.6342/NTU201903198 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 9.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
