請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74204
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳聿宏(Yu-Hung Chen) | |
dc.contributor.author | Che-Yu Shen | en |
dc.contributor.author | 沈哲宇 | zh_TW |
dc.date.accessioned | 2021-06-17T08:24:14Z | - |
dc.date.available | 2021-02-22 | |
dc.date.copyright | 2021-02-22 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-01-26 | |
dc.identifier.citation | 英文文獻 Balke, M. (2017). AARRR Framework- Metrics That Let Your StartUp Sound Like A Pirate Ship. Medium. Retrieved at: https://medium.com/@ms.mbalke/aarrr-framework-metrics-that-let-your-startup-sound-like-a-pirate-ship-e91d4082994b Breckler, S.J. (1984). Empirical Validation of Affect, Behavior, and Cognition as Distinct Components of Attitude. Journal of Personality and Social Psychology, 47, 1191. Cover, T.M., Hart, P.E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. Cox, D.R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B (Methodological), 20(2), 215-242. Fader, P.S., Hardie, B.G.S. (2005). A note on deriving the Pareto/NBD model and related expressions. Computer Science. Fisher, S. (2013). Fab.com’s Ascent to $1 Billion Valuation Brings Missteps. Bloomberg Technology Blog. McClure, D. (2007). Startup Metrics for Pirates: AARRR. Mitchell, T.M. (1997). Machine Learning. McGraw Hill. Monetate Ecommerce Quarterly for Q1 2016 (2016). Monetate. Powers, D.M.W. (2011). Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness Correlation. Journal of Machine Learning Technologies. 2 (1): 37–63. Quinlan, J.R. (1986). Induction of Decision Trees. Kluwer Academic Publisher. Machine Learning 1, 81-106. Reichheld, F. (2001). Prescription for Cutting Costs. Bain Company report. Schmittlein, D.C., Morrison, D.G., Colombo, R. (1987). Counting your customers: Who-are they and what will they do next?. Management science, 33(1), 1-24. The Ultimate Guide to Ecommerce Conversion Funnel Optimization (2018). Stray Digital. Retrieved at: https://straydigital.com/the-ultimate-guide-to-ecommerce-conversion-funnel-optimization/ 中文文獻 David Huang(2018)。利用貝氏方法估計客戶終生價值—Pareto / NBD 模型與 Gamma / Gamma 模型。David's Perspective。取自:https://taweihuang.hpd.io/2018/12/02/clv-paretonbd-gammagamma/ Edison Chen(2017)。從 AARRR 模型幫助對焦商業目標與設計策略。Medium。取自:https://medium.com/yahoo-apac-design/%E5%BE%9E-aarrr-%E6%A8%A1%E5%9E%8B%E5%B9%AB%E5%8A%A9%E5%B0%8D%E7%84%A6%E5%95%86%E6%A5%AD%E7%9B%AE%E6%A8%99%E8%88%87%E8%A8%AD%E8%A8%88%E7%AD%96%E7%95%A5-496cdeee6937 James Yeh(2017)。[資料分析 機器學習] 第3.1講:Python 機器學習以及Scikit-learn介紹。Medium。取自:https://medium.com/jameslearningnote/%E8%B3%87%E6%96%99%E5%88%86%E6%9E%90-%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-%E7%AC%AC3-1%E8%AC%9B-python-%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E4%BB%A5%E5%8F%8Ascikit-learn%E4%BB%8B%E7%B4%B9-fdb052463911 Shirley K(2020)。【電商行銷案例】購物車結帳率成長2倍,不需調整網站設計!。Omnichat Blog。取自:https://blog.omnichat.ai/2020/06/fun-goody-cart-marketing/ 三大類機器學習:監督式、強化式、非監督式(2018)。DESIGN THINKING團隊。取自:https://ai4dt.wordpress.com/2018/05/25/%E4%B8%89%E5%A4%A7%E9%A1%9E%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%EF%BC%9A%E7%9B%A3%E7%9D%A3%E5%BC%8F%E3%80%81%E5%BC%B7%E5%8C%96%E5%BC%8F%E3%80%81%E9%9D%9E%E7%9B%A3%E7%9D%A3%E5%BC%8F/ 什麼是資料分析的漏斗模型。帆軟。取自:https://www.finereport.com/tw/knowledge/finereport/loudou.html 任立中、陳靜怡(2019)。大數據行銷:邁向智能行銷之路。前程文化。 行銷策略系列|AARRR海盜模型:公司經理人一定要知道的營收成長途徑。HoliBear。取自:https://www.holibear.com/hblog/%E8%A1%8C%E9%8A%B7%E7%AD%96%E7%95%A5%E7%B3%BB%E5%88%97%EF%BD%9Caarrr%E6%B5%B7%E7%9B%9C%E6%A8%A1%E5%9E%8B%EF%BC%9A%E5%85%AC%E5%8F%B8%E7%B6%93%E7%90%86%E4%BA%BA%E4%B8%80%E5%AE%9A%E8%A6%81%E7%9F%A5/ 西恩‧艾利斯、摩根‧布朗(2018)。成長駭客攻略:數位行銷教父教你打造高速成長團隊。遠見天下文化。 促銷怎麼玩?辦促銷也能賺飽飽的秘訣大公開(2019)。SHOPLINE電商教室。取自:https://blog.shopline.tw/all-about-sales-promotion/#i-3 涂逸凡(2018)。零售顧客回歸預測模型分析。國立政治大學資訊管理學系學術論文。 陳士杰(2005)。決策樹學習。 陳士杰(2005)。最近鄰居分類。 陳賢澔(2017)。新零售、全通路、O2O | 為何觀念大家都有,卻少有品牌做得到位。取自:https://www.91app.com/blog/new-retail-concept/ 設立網店的「電子優惠券」秒殺銷售策略,抓緊顧客心理(2015)。SHOPLINE電商教室。取自:https://shopline.hk/blog/boost-ecommerce-sales-with-coupon-promotion/ 黃俊堯(2019)。數位行銷。雙葉書廊。 謝少明(2020)。顧客群預測之系統比較:行銷隨機模型vs機器學習。國立臺灣大學商學研究所博士論文。 羅凱揚、蘇宇暉、鍾皓軒(2019)。行銷資料科學|大數據x市場分析x人工智慧。碁峰資訊。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74204 | - |
dc.description.abstract | 顧客的行為分析是近年學術與業界關切的議題,顧客的消費旅程數位化,轉換為數據紀錄下來,讓學者與企業得以深入分析顧客行為,更加了解顧客的需求,並制定相對應的策略,進而與顧客維繫更長的關係;相對應的管理架構如海盜模型、機器學習分析法的應用也更加廣泛。本研究試建立模型,透過分析訪客在電子商務網站的瀏覽行為,預測其是否進行購買,並建議企業制定行銷策略。
本研究以訪客瀏覽網站的不同行為次數作為變數,並考量行為時間點的代表意義給予權重;以經過加權之瀏覽行為作為特徵,以下個月是否進行購買為標籤,利用機器學習進行訓練與測試。在測試的演算法中,決策樹法在精準行銷的條件下有較高的召回率;模型做決策的過程以用戶經加權之瀏覽個別商品頁面次數作為主要判斷依據,越高則購買的可能性越高。藉此,本研究建議品牌挑選模型預測成為購買客的訪客作為目標對象,進行折價券與購物籃分析以提升購買人數與客單價。 | zh_TW |
dc.description.abstract | Customer behavior analysis has been an important topic for academics and the industry in recent years. Customer journey has digitalized and recorded as data, so that scholars and companies can analyze customer behavior, understand customer needs, develop strategies, and strengthen customer relationship. Business framework like Pirate Model, and machine learning are generally implied. This paper establishes the model to predict whether users purchase by analyzing their behavior of browsing e-commerce website, and suggests marketing strategies.
This paper sets the counts of different behaviors of browsing as variables and gives weight considering behavior timing. The model sets the weighted variables as feature and sets whether the user purchase next month as label, using machine learning for training and testing. In testing algorithms, decision tree method has a higher recall rate under the condition of precision marketing. The decision tree method makes the decision mainly based on the weighted counts of user browsing product pages. The higher the weighted counts, the higher the possibility of purchasing. So, this paper suggests the firm target users predicted by model, and set coupons or do basket analysis to increase the number of customers and the transaction value. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:24:14Z (GMT). No. of bitstreams: 1 U0001-2501202113255600.pdf: 1732494 bytes, checksum: d0871f5e503838a281ba927d7b6baee5 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 口試委員會審定書 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 V 表目錄 VI 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 6 第三節 研究架構 7 第二章 文獻探討 8 第一節 顧客購買預測相關文獻 8 第二節 機器學習 9 第一項 機器學習概論 9 第二項 羅吉斯回歸 10 第三項 最近鄰居法 11 第四項 決策樹 12 第五項 混淆矩陣 13 第三章 數據分析與模型建立 15 第一節 研究數據說明與分析 15 第二節 模型架構建立 18 第四章 分析結果 23 第一節 觀察區間設定 23 第二節 分類演算法分析 25 第三節 行銷建議 36 第五章 結論與建議 39 第一節 研究結論 39 第二節 研究限制與未來研究方向 40 參考文獻 42 | |
dc.language.iso | zh-TW | |
dc.title | 用戶行為分析與購買預測 | zh_TW |
dc.title | User Behavior Analysis and Purchase Prediction | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳瑀屏(Yu-Ping Chen),吳政衛(Cheng-Wei Wu) | |
dc.subject.keyword | 消費者行為,顧客分析,機器學習,精準行銷,購買預測, | zh_TW |
dc.subject.keyword | customer behavior,customer analysis,machine learning,precision marketing,purchasing prediction, | en |
dc.relation.page | 44 | |
dc.identifier.doi | 10.6342/NTU202100154 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-01-27 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 國際企業學研究所 | zh_TW |
顯示於系所單位: | 國際企業學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2501202113255600.pdf 目前未授權公開取用 | 1.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。