請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74203
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王彥士(Yane-Shih Wang) | |
dc.contributor.author | Mu-Lung Jian | en |
dc.contributor.author | 簡睦龍 | zh_TW |
dc.date.accessioned | 2021-06-17T08:24:11Z | - |
dc.date.available | 2024-08-19 | |
dc.date.copyright | 2019-08-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | 1. Narod, S. A.; Iqbal, J.; Miller, A. B., Why have breast cancer mortality rates declined ? J. Cancer Policy 2015, 5, 8-17.
2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68 (6), 394-424. 3. Ministry of Health and Welfare, Taiwan, Cancer rigistry annual report, 2016 Taiwan 4. El-Abd, E.; Matta, C. A.; Sheta, M.; El-Kerm, Y.; Sakr, S., Histopathological characteristics of breast cancer and evaluation of ER alpha and Her-2neu using immunohistochemical and RT-PCR techniques. Alexandria J. Med. 2019, 50 (3), 275-282. 5. Fallahpour, S.; Navaneelan, T.; De, P.; Borgo, A., Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. CMAJ Open 2017, 5 (3), E734-E739. 6. Cheng, S. H.-C.; Yu, B.-L.; Horng, C.-F.; Tsai, S. Y.; Chen, C.-M.; Chu, N.-M.; Tsou, M.-H.; Lin, C. K. J.; Shih, L.-S.; Liu, M.-C., Long-term survival and stage I breast cancer subtypes. J. Cancer Res. Pract. 2016, 3 (1), 1-8. 7. Cejalvo, J. M.; Martinez de Duenas, E.; Galvan, P.; Garcia-Recio, S.; Burgues Gasion, O.; Pare, L.; Antolin, S.; Martinello, R.; Blancas, I.; Adamo, B.; Guerrero-Zotano, A.; Munoz, M.; Nuciforo, P.; Vidal, M.; Perez, R. M.; Chacon Lopez-Muniz, J. I.; Caballero, R.; Peg, V.; Carrasco, E.; Rojo, F.; Perou, C. M.; Cortes, J.; Adamo, V.; Albanell, J.; Gomis, R. R.; Lluch, A.; Prat, A., Intrinsic Subtypes and Gene Expression Profiles in Primary and Metastatic Breast Cancer. Cancer Res. 2017, 77 (9), 2213-2221. 8. Tremont, A.; Lu, J.; Cole, J. T., Endocrine therapy for early breast cancer: updated review. Ochsner J. 2017, 17 (4), 405-411. 9. Wang, J.; Sang, D.; Xu, B.; Yuan, P.; Ma, F.; Luo, Y.; Li, Q.; Zhang, P.; Cai, R.; Fan, Y.; Chen, S.; Li, Q., Value of Breast Cancer Molecular Subtypes and Ki67 Expression for the Prediction of Efficacy and Prognosis of Neoadjuvant Chemotherapy in a Chinese Population. Medicine (Baltimore) 2016, 95 (18), e3518. 10. Gnant, M.; Harbeck, N.; Thomssen, C., St. Gallen 2011: Summary of the Consensus Discussion. Breast Care 2011, 6 (2), 136-141. 11. Sun, X.; Kaufman, P. D., Ki-67: more than a proliferation marker. Chromosoma 2018, 127 (2), 175-186. 12. Mitri, Z.; Constantine, T.; O'Regan, R., The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. Chemother. Res. Pract. 2012, 2012, 743193. 13. Tong, C. W. S.; Wu, M.; Cho, W. C. S.; To, K. K. W., Recent Advances in the Treatment of Breast Cancer. Front. Oncol. 2018, 8, 227. 14. Waks, A. G.; Winer, E. P., Breast Cancer Treatment: A Review. JAMA. 2019, 321 (3), 288-300. 15. Lee, J. H.; Nan, A., Combination drug delivery approaches in metastatic breast cancer. J. Drug Deliv. 2012, 2012, 915375. 16. Liedtke, C.; Mazouni, C.; Hess, K. R.; André, F.; Tordai, A.; Mejia, J. A.; Symmans, W. F.; Gonzalez-Angulo, A. M.; Hennessy, B.; Green, M. J., Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2008, 26 (8), 1275-1281. 17. Berrada, N.; Delaloge, S.; Andre, F. J., Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann. Oncol. 2010, 21 (suppl_7), vii30-vii35. 18. Castrellon, A. B.; Pidhorecky, I.; Valero, V.; Raez, L. E., The role of carboplatin in the neoadjuvant chemotherapy treatment of triple negative breast cancer. Oncol. Rev. 2017, 11 (1). 19. McDonald, E. S.; Clark, A. S.; Tchou, J.; Zhang, P.; Freedman, G. M., Clinical diagnosis and management of breast cancer. J. Nucl. Med. 2016, 57 (Suppl 1), 9S-16S. 20. Cody Iii, H. S.; Gynecology, Current surgical management of breast cancer. Curr. Opin. Obstet. Gyneol. 2002, 14 (1), 45-52. 21. Veronesi, U.; Cascinelli, N.; Mariani, L.; Greco, M.; Saccozzi, R.; Luini, A.; Aguilar, M.; Marubini, E., Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Eegl. J. Med. 2002, 347 (16), 1227-1232. 22. Palmer, A. C.; Sorger, P. K., Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy. Cell 2017, 171 (7), 1678-1691 e13. 23. Moreno-Aspitia, A.; Perez, E. A. In Treatment options for breast cancer resistant to anthracycline and taxane, Mayo Clinic Proceedings, Elsevier: 2009; pp 533-545. 24. Fournier, A.; Berrino, F.; Clavel-Chapelon, F. J. B. c. r.; treatment, Unequal risks for breast cancer associated with different hormone replacement therapies: results from the E3N cohort study. Breast Cancer Res. Treat. 2008, 107 (1), 103-111. 25. Piccart-Gebhart, M. J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C., Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Eegl. J. Med. 2005, 353 (16), 1659-1672. 26. Hudis, C. A., Trastuzumab—mechanism of action and use in clinical practice. N. Eegl. J. Med. 2007, 357 (1), 39-51. 27. Liu, C.; Chari, R. V., The development of antibody delivery systems to target cancer with highly potent maytansinoids. Expert. Opin. Investig. Drugs 1997, 6 (2), 169-172. 28. Junttila, T. T.; Li, G.; Parsons, K.; Phillips, G. L.; Sliwkowski, M. X., Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat. 2011, 128 (2), 347-356. 29. Zhong, H.; Chan, G.; Hu, Y.; Hu, H.; Ouyang, D., A Comprehensive Map of FDA-Approved Pharmaceutical Products. Pharmaceutics 2018, 10 (4). 30. Schmid, P.; Adams, S.; Rugo, H. S.; Schneeweiss, A.; Barrios, C. H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Shaw Wright, G., Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Eegl J Med. 2018, 379 (22), 2108-2121. 31. Senapati, S.; Mahanta, A. K.; Kumar, S.; Maiti, P.; therapy, t., Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target Ther. 2018, 3 (1), 7. 32. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release 2000, 65 (1-2), 271-284. 33. Duncan, R., Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer. 2006, 6 (9), 688. 34. Minko, T.; Kopečková, P.; Kopeček, J., Efficacy of the chemotherapeutic action of HPMA copolymer‐bound doxorubicin in a solid tumor model of ovarian carcinoma. Int. J. Cancer. 2000, 86 (1), 108-117. 35. Miele, E.; Spinelli, G. P.; Miele, E.; Tomao, F.; Tomao, S., Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine 2009, 4, 99. 36. Abraham, S. A.; Waterhouse, D. N.; Mayer, L. D.; Cullis, P. R.; Madden, T. D.; Bally, M. B., The liposomal formulation of doxorubicin. In Methods Enzymol., Elsevier: 2005; Vol. 391, pp 71-97. 37. Ni, Y., DPS fusion proteins for use in vaccines and diagnostics. US Patents: 2016. 38. Abedin, M. J.; Liepold, L.; Suci, P.; Young, M.; Douglas, T. J., Synthesis of a cross-linked branched polymer network in the interior of a protein cage. J. Am. Chem. Soc. 2009, 131 (12), 4346-4354. 39. Choi, S.-H.; Kwon, I. C.; Hwang, K. Y.; Kim, I.-S.; Ahn, H. J., Small heat shock protein as a multifunctional scaffold: integrated tumor targeting and caspase imaging within a single cage. Biomacromolecules 2011, 12 (8), 3099-3106. 40. Kim, M.; Rho, Y.; Jin, K. S.; Ahn, B.; Jung, S.; Kim, H.; Ree, M., pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 2011, 12 (5), 1629-1640. 41. Kim, S.; Kim, G. S.; Seo, J.; Gowri Rangaswamy, G.; So, I. S.; Park, R. W.; Lee, B. H.; Kim, I. S., Double-Chambered Ferritin Platform: Dual-Function Payloads of Cytotoxic Peptides and Fluorescent Protein. Biomacromolecules 2016, 17 (1), 12-9. 42. Wang, C.; Zhang, C.; Li, Z.; Yin, S.; Wang, Q.; Guo, F.; Zhang, Y.; Yu, R.; Liu, Y.; Su, Z., Extending Half Life of H-Ferritin Nanoparticle by Fusing Albumin Binding Domain for Doxorubicin Encapsulation. Biomacromolecules 2018, 19 (3), 773-781. 43. Tetter, S.; Hilvert, D., Enzyme Encapsulation by a Ferritin Cage. Angew. Chem. Int. Ed. Engl. 2017, 56 (47), 14933-14936. 44. Ahn, B.; Lee, S. G.; Yoon, H. R.; Lee, J. M.; Oh, H. J.; Kim, H. M.; Jung, Y., Four-fold Channel-Nicked Human Ferritin Nanocages for Active Drug Loading and pH-Responsive Drug Release. Angew. Chem. Int. Ed. Engl. 2018, 57 (11), 2909-2913. 45. Nussbaumer, M. G.; Duskey, J. T.; Rother, M.; Renggli, K.; Chami, M.; Bruns, N. J. A. S., Chaperonin–dendrimer conjugates for siRNA delivery. Adv. Sci. 2016, 3 (10), 1600046. 46. Li, Y.; Toyip, R. O.; Peng, T.; Lim, S., Encapsulation and release profile of ferritin cage from a polymerix matrix. 2012, 2 (01), 1250001. 47. Min, J.; Moon, H.; Yang, H. J.; Shin, H. H.; Hong, S. Y.; Kang, S., Development of P22 Viral Capsid Nanocomposites as Anti‐C ancer Drug, Bortezomib (BTZ), Delivery Nanoplatforms. Macromol. Biosci. 2014, 14 (4), 557-564. 48. Ng, B. C.; Yu, M.; Gopal, A.; Rome, L. H.; Monbouquette, H. G.; Tolbert, S. H., Encapsulation of semiconducting polymers in vault protein cages. Nano. Lett. 2008, 8 (10), 3503-3509. 49. Granick, S.; Michaelis, L., Ferritin and apoferritin. Adv. Protein Chem 1942, 95 (2469), 439-440. 50. Theil, E. C., Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 1987, 56 (1), 289-315. 51. Bernacchioni, C.; Ghini, V.; Theil, E.; Turano, P., Modulating the permeability of ferritin channels. RSC Adv. 2016, 6 (25), 21219-21227. 52. Uchida, M.; Flenniken, M. L.; Allen, M.; Willits, D. A.; Crowley, B. E.; Brumfield, S.; Willis, A. F.; Jackiw, L.; Jutila, M.; Young, M. J. J., Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J. Am. Chem. Soc. 2006, 128 (51), 16626-16633. 53. Falvo, E.; Tremante, E.; Fraioli, R.; Leonetti, C.; Zamparelli, C.; Boffi, A.; Morea, V.; Ceci, P.; Giacomini, P., Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale 2013, 5 (24), 12278-12285. 54. Ma-Ham, A.; Wu, H.; Wang, J.; Kang, X.; Zhang, Y.; Lin, Y. J., Apoferritin-based nanomedicine platform for drug delivery: equilibrium binding study of daunomycin with DNA. J. Mater. Chem. 2011, 21 (24), 8700-8708. 55. Zhen, Z.; Tang, W.; Todd, T.; Xie, J., Ferritins as nanoplatforms for imaging and drug delivery. Expert. Opin. Drug Deliv. 2014, 11 (12), 1913-1922. 56. Crick, F. H. J., The origin of the genetic code. J. Mol. Biol. 1968, 38 (3), 367-379. 57. Sonenberg, N.; Dever, T. E., Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol. 2003, 13 (1), 56-63. 58. Petry, S.; Brodersen, D. E.; Murphy IV, F. V.; Dunham, C. M.; Selmer, M.; Tarry, M. J.; Kelley, A. C.; Ramakrishnan, V., Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 2005, 123 (7), 1255-1266. 59. Cohen, G.; Munier, R., Incorporation of structural analogues of amino acids in bacterial proteins. Biochim. Biophys. Acta. 1956, 21 (3), 592-593. 60. Johnson, J. A.; Lu, Y. Y.; Van Deventer, J. A.; Tirrell, D. A., Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr. Opin. Chem. Biol. 2010, 14 (6), 774-780. 61. Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M. C.; Schultz, P. G., A general method for site-specific incorporation of unnatural amino acids into proteins. Science 1989, 244 (4901), 182-188. 62. Wang, L.; Xie, J.; Schultz, P. G., Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 225-249. 63. James, C. M.; Ferguson, T. K.; Leykam, J. F.; Krzycki, J. A., The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon. J. Biol. Chem. 2001, 276 (36), 34252-34258. 64. Liu, C. C.; Schultz, P. G., Adding new chemistries to the genetic code. Annu. Rev. Biochem. 2010, 79, 413-444. 65. Fischer, M. J., Amine coupling through EDC/NHS: a practical approach. In Surface plasmon resonance, Springer: 2010; pp 55-73. 66. Lowe, A. B., Thiol-ene 'click' reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1 (1), 17-36. 67. Klykov, O.; Weller, M. G., Quantification of N-hydroxysuccinimide and N-hydroxysulfosuccinimide by hydrophilic interaction chromatography (HILIC). Anal. Methods. 2015, 7 (15), 6443-6448. 68. Devaraj, N. K., The future of bioorthogonal chemistry. ACS Cent. Sci. 2018, 4 (8), 952-959. 69. Saxon, E.; Bertozzi, C. R., Cell surface engineering by a modified Staudinger reaction. Science 2000, 287 (5460), 2007-2010. 70. Kiick, K. L.; Saxon, E.; Tirrell, D. A.; Bertozzi, C. R., Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (1), 19-24. 71. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise huisgen cycloaddition process: copper (I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 2002, 41 (14), 2596-2599. 72. Shapiro, C. L.; Recht, A., Side effects of adjuvant treatment of breast cancer. N. Eegl. J. Med. 2001, 344 (26), 1997-2008. 73. Gradishar, W. J., Albumin-bound paclitaxel: a next-generation taxane. Expert. Opin. Pharmacother. 2006, 7 (8), 1041-1053. 74. Park, B.-W.; Zhang, H.-T.; Wu, C.; Berezov, A.; Zhang, X.; Dua, R.; Wang, Q.; Kao, G.; O'Rourke, D. M.; Greene, M. I., Rationally designed anti-HER2/neu peptide mimetic disables p185 HER2/neu tyrosine kinases in vitro and in vivo. Nature Biotechnol. 2000, 18 (2), 194. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74203 | - |
dc.description.abstract | 迄今,女性乳癌發生率仍是所有癌症之首,乳癌的高發病率對於世界各地的女性族群是潛在的威脅,因此乳癌治療是極為重要的研究課題。目前在乳癌治療的策略上,具有多重作用目標以及良好抗癌效率的聯合療法被廣泛運用於惡性乳癌的治療上。然而傳統聯合療法的主要問題是多種化療藥物引發的多重副作用和同時服用多種藥物的不便性,也大幅地降低了患者的生活品質。為了提高抗癌效率,降低聯合治療的脫靶效應,在此論文研究中我們致力於設計一種新穎的藥物輸送平台,該藥物載體可以攜帶多種化療藥物並且具有標靶乳癌細胞的選擇性。
攜鐵蛋白是一種中空蛋白籠,廣泛地存在於各種生物且具有一定的生物相容性和良好的溫度及酸鹼耐受性,是作為輸送蛋白質藥物和小分子藥物的理想載體。在此篇研究中,利用生物正交的pyrrolysyl-tRNA synthetase•tRNA配對將對疊氮基苯丙氨酸(p-azido-L-phenylalanine)嵌入攜鐵蛋白的F81和K143位點,且攜帶非典型胺基酸的攜鐵蛋白仍維持著籠狀結構。透過蛋白質譜分析及共振能量轉移分析(fluorescence resonance energy transfer)證明藉由鍵擊化學(click chemistry)能有效地將多重化療藥物或螢光分子裝載至攜鐵蛋白上。此外,攜鐵蛋白之末端與抗人類表皮生長因子受體2 (HER2)胜肽結合,透過共軛焦顯微成像分析,攜鐵蛋白能靶向HER2過表現之乳癌細胞並且藉由胞吞作用進入癌細胞。總體而言,非典氨基酸嵌入之攜鐵蛋白為具有多重載藥和細胞靶向功能的藥物運送載體。 | zh_TW |
dc.description.abstract | Breast cancer occurs most frequently in women around the world. The high incidence rate of breast cancer is a potential threat to women, so it is a study emphasis in improving breast cancer therapy. So far, the combination therapy, with multiple targeting ability and improved anti-cancer efficiency, is widely used for treating malignant breast cancer. However, the main problems for conventional combination therapy are the numerous side effects of multiple chemotherapy drugs and inconvenience of taking multiple medications at the same time, which dramatically lower the life quality of patients. To elevate the efficiency and lower the off-target of combination therapy, in our research, we focus on designing a novel carrier-mediated drug delivery platform which can carry multiple chemotherapy drugs and target breast cancer cell selectively.
Human ferritin, a hollow protein cage with potential biocompatibility and thermal/pH stability, is a suitable vehicle for peptide/protein drug and small molecule drug delivery. In this study, p-Azido-L-phenylalanine (pAzF) was incorporated into ferritin by evolved pyrrolysyl-tRNA synthetase•tRNA_CUA^Pyl pair at F81 and K143 positions with self-assembled capsid structure. Methodology in multi-drug loading through click chemistry is established and verified by protein mass spectrometry and fluorescence resonance energy transfer analysis. In HER2+ breast cancer cell specific targeting study, the anti-Her2/neu peptide fused ferritin (AHNP-ferritin) has been proved to entry cell through Her2 recognition/endocytosis in fluorescence imaging study. Overall, pAzF encoded AHNP-ferritin was proved can be displayed as a multi-drugs delivering platform with precise drug-loading and cell targeting function. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:24:11Z (GMT). No. of bitstreams: 1 ntu-108-R06b46017-1.pdf: 6705543 bytes, checksum: 16e36874c7c14aac0774fda3fb1883b6 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III Table of contents V List of schemes IX List of table X List of figures XI Abbreviations XIII Chapter 1. Introduction 1 1.1 Breast cancer 1 1.1.1 Severity of breast cancer worldwide and in Taiwan 1 1.1.2 Breast cancer therapy 2 1.2 Protein cage of drug delivery system 7 1.2.1 Protein cage 7 1.2.2 Ferritin as a delivery platform 9 1.3 Expanding genetic code and applications 10 1.3.1 Native protein translation mechanism 10 1.3.2 Site-specific incorporation of ncAAs 12 1.3.3 Efficient labeling strategy in biological system 13 1.4 Specific aim of thesis 14 Chapter 2. Materials and methods 16 2.1 DNA and protein sequence 16 2.1.1 DNA sequence 16 2.1.2 Protein sequence 18 2.2 Plasmid construction 19 2.2.1 Primer list 19 2.2.2 Plasmid constructions 20 2.3 Protein productions and purifications 23 2.4 Gel electrophoresis analysis 25 2.4.1 SDS-PAGE analysis 25 2.4.2 Native-PAGE analysis 26 2.5 Protein biophysical characterizations 26 2.5.1 Protein ESI-MS analysis 26 2.5.2 DLS analysis 27 2.5.3 TEM analysis 27 2.5.4 Fluorescence spectrum 28 2.6 Protein chemistry 28 2.6.1 Synthesis of ferritin-dye conjugates 28 2.6.2 NHS-amine coupling chemistry 28 2.6.3 Synthesis of ferritin-doxorubicin conjugates 29 2.6.4 Thiol-maleimide coupling chemistry 29 2.6.5 Synthesis of ferritin-mertansine conjugates 30 2.6.6 Ferritin reconstruction 30 2.7 In vitro cell study 31 2.7.1 Cell culture 31 2.7.2 Confocal microscopy 32 2.7.3 Cytotoxicity assay 33 Chapter 3. Results and discussion 34 3.1 Encapsulating therapeutic enzymes by controlled-assembling ferritin 34 3.1.1 Constructions of ferritin containing sfGFP 34 3.1.2 Characterizations of ferritins containing sfGFP 34 3.1.3 TEV protease digestion of ferritins containing sfGFP 35 3.1.4 Interface engineering through click-chemistry 36 3.2 Engineering ferritins with drug loading and targeting abilities 37 3.2.1 Construction and purification of ferritins with pAzF incorporation 37 3.2.2 ESI-MS analysis of ferritin with pAzF incorporation 37 3.2.3 Construction and purification of ferritins containing AHNP 38 3.2.4 ESI-MS analysis of AHNP-ferritins with pAzF incorporation 38 3.2.5 Synthesis of ferritin-DOX conjugates 39 3.3 Specific targeting test of engineered ferritins against HER2 positive breast cancer cell 40 3.3.1 Synthesis of ferritin-dye and AHNP-ferritin-dye conjugates 40 3.3.2 Purification of ferritin-dye and AHNP-ferritin-dye conjugates 40 3.3.3 Cellular uptake of ferritin-dye and ferritin-drug conjugates 41 3.3.4 Cytotoxicity assay of Ftn variants DOX conjugates 41 3.4 Generating multiple drugs loaded ferritin 42 3.4.1 FRET analysis of multiple dyes labeled ferritins 42 3.4.2 Reconstruction of distinct ferritins by pH-triggered disassembling 43 3.4.3 Synthesis of DBCO-DM1 and Ftn-DOX/DM1 conjugates 43 Chapter 4. Conclusion 45 Reference 95 Appendix 102 | |
dc.language.iso | en | |
dc.title | 利用對位疊氮基苯丙胺酸嵌入之攜鐵籠狀蛋白作為藥物載體開發之研究 | zh_TW |
dc.title | p-Azido-L-phenylalanine encoded ferritin cage for drug delivery study | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡明道(Ming-Daw Tsai),王宗興(Tsung-Shing Andrew Wang) | |
dc.subject.keyword | 籠狀蛋白,藥物載體,攜鐵蛋白,點擊化學,非典型胺基酸之嵌入,PylRS‧tRNA配對, | zh_TW |
dc.subject.keyword | protein cages,drug delivery,ferritin,click chemistry,non-canonical amino acid incorporation,PylRS‧tRNA pair, | en |
dc.relation.page | 115 | |
dc.identifier.doi | 10.6342/NTU201903160 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-13 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 6.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。