請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74201
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林恭如(Gong-Ru Lin) | |
dc.contributor.author | Sheng-Yu Hu | en |
dc.contributor.author | 胡盛禹 | zh_TW |
dc.date.accessioned | 2021-06-17T08:24:05Z | - |
dc.date.available | 2021-08-22 | |
dc.date.copyright | 2019-08-22 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | [1] Zhong, Y., L.L. Shaw, M. Manjarres, and M.F. Zawrah, 'Synthesis of Silicon Carbide Nanopowder Using Silica Fume', Journal of the American Ceramic Society, vol. 93, pp. 3159-3167, 2010.
[2] Izhevskyi, V.A., L.A. Genova, J.C. Bressiani, and A.H.A. Bressiani, 'Review article: silicon carbide. Structure, properties and processing', Cerâmica, vol. 46, pp. 4-13, 2000. [3] Kowbel, W., C.A. Bruce, K.L. Tsou, K. Patel, J.C. Withers, and G.E. Youngblood, 'High thermal conductivity SiC/SiC composites for fusion applications', Journal of Nuclear Materials, vol. 283-287, pp. 570-573, 2000. [4] Andrievskii, R., 'Synthesis, structure and properties of nanosized silicon carbide', Reviews on advanced materials science, vol. 22, pp. 1-20, 2009. [5] Soref, R.A., 'Electro‐optical and nonlinear optical coefficients of ordered group IV semiconductor alloys', Journal of Applied Physics, vol. 72, pp. 626-630, 1992. [6] Singh, S., J.R. Potopowicz, L.G. Van Uitert, and S.H. Wemple, 'Nonlinear Optical Properties of Hexagonal Silicon Carbide', Applied Physics Letters, vol. 19, pp. 53-56, 1971. [7] Chen, J., Z.H. Levine, and J.W. Wilkins, 'Linear and nonlinear optical properties of four polytypes of SiC', Phys Rev B Condens Matter, vol. 50, pp. 11514-11519, 1994. [8] Sato, H., M. Abe, I. Shoji, J. Suda, and T. Kondo, 'Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide', Journal of the Optical Society of America B, vol. 26, pp. 1892-1896, 2009. [9] Strait, J.H., P.A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M.G. Spencer, 'Emission of terahertz radiation from SiC', Applied Physics Letters, vol. 95, pp. 051912, 2009. [10] Lundquist, P.M., W.P. Lin, G.K. Wong, M. Razeghi, and J.B. Ketterson, 'Second harmonic generation in hexagonal silicon carbide', Applied Physics Letters, vol. 66, pp. 1883-1885, 1995. [11] Niedermeier, S., H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, 'Second-harmonic generation in silicon carbide polytypes', Applied Physics Letters, vol. 75, pp. 618-620, 1999. [12] An, Y.Q., J.E. Rowe, D.B. Dougherty, J.U. Lee, and A.C. Diebold, 'Optical second-harmonic generation induced by electric current in graphene on Si and SiC substrates', Physical Review B, vol. 89, pp. 115310, 2014. [13] Yamada, S., B.S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, 'Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 mum', Opt Express, vol. 20, pp. 14789-96, 2012. [14] Kityk, I.V., M. Makowska-Janusik, A. Kassiba, and K.J. Plucinski, 'SiC nanocrystals embedded in oligoetheracrylate photopolymer matrices; new promising nonlinear optical materials', Optical Materials, vol. 13, pp. 449-453, 2000. [15] Kityk, I.V., A. Kassiba, and S. Benet, 'Origin of Nonlinear Optical Susceptibility in SiC Nanocrystallites', Journal of Cluster Science, vol. 12, pp. 399-419, 2001. [16] Wu, I.J. and G.Y. Guo, 'Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes', Physical Review B, vol. 78, pp. 035447, 2008. [17] Weinberger, P., 'John Kerr and his effects found in 1877 and 1878', Philosophical Magazine Letters, vol. 88, pp. 897-907, 2008. [18] Ostrovskii, L.A., 'Self-action of Light in Crystals', Journal of Experimental and Theoretical Physics Letters,, vol. 5, pp. 272, 1967. [19] Soref, R.A., 'Nonlinear refractive index of IV-IV compound semiconductors', Appl Opt, vol. 31, pp. 4627-9, 1992. [20] Borshch, A.A., M.S. Brodyn, V.I. Volkov, V.I. Rudenko, V.R. Lyakhovetskii, V.A. Semenov, and V.M. Puzikov, 'Nonlinear refraction in nanocrystalline silicon carbide films', JETP Letters, vol. 88, pp. 386-388, 2008. [21] Tan, H., H. van Driel, S. Schweizer, R. Wehrspohn, and U. Gösele, 'Nonlinear optical tuning of a two-dimensional silicon photonic crystal', Physical Review B, vol. 70, pp. 205110, 2004. [22] Ding, J.-L., Y.-C. Wang, H. Zhou, Q. Chen, S.-X. Qian, Z.-C. Feng, and W.-J. Lu, 'Nonlinear Optical Properties and Ultrafast Dynamics of Undoped and Doped Bulk SiC', Chinese Physics Letters, vol. 27, pp. 124202, 2010. [23] Liu, Z., X. Zhang, X. Yan, Y. Chen, and J. Tian, 'Nonlinear optical properties of graphene-based materials', Chinese Science Bulletin, vol. 57, pp. 2971-2982, 2012. [24] Dey, P.P. and A. Khare, 'Effect of substrate temperature on structural and linear and nonlinear optical properties of nanostructured PLD a-SiC thin films', Materials Research Bulletin, vol. 84, pp. 105-117, 2016. [25] Cheng, C.-H., C.-L. Wu, Y.-H. Lin, W.-L. Yan, M.-H. Shih, J.-H. Chang, C.-I. Wu, C.-K. Lee, and G.-R. Lin, 'Strong optical nonlinearity of the nonstoichiometric silicon carbide', Journal of Materials Chemistry C, vol. 3, pp. 10164-10176, 2015. [26] Cheng, C.H., Y.H. Lin, T.H. Chen, H.Y. Chen, Y.C. Chi, C.K. Lee, C.I. Wu, and G.R. Lin, 'Can silicon carbide serve as a saturable absorber for passive mode-locked fiber lasers?', Sci Rep, vol. 5, pp. 16463, 2015. [27] Hsieh, C.-H., C.-H. Cheng, P.-H. Chen, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, and G.-R. Lin, 'Polarization-manipulated all-optical cross-wavelength data inversion in a C-rich SiCx micro-ring', J. Mater. Chem. C, vol. 5, pp. 10158-10166, 2017. [28] Syu, S.C., C.H. Cheng, H.Y. Wang, Y.C. Chi, C.I. Wu, and G.R. Lin, 'Realizing multi-functional all-optical data processing on nanoscale SiC waveguides', Sci Rep, vol. 8, pp. 14859, 2018. [29] Su, S.-P., C.-L. Wu, C.-H. Cheng, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, Y.-H. Lin, Y.-C. Chi, M.-H. Shih, C.-K. Lee, and G.-R. Lin, 'Nonstoichiometric SiC Bus/Ring Waveguide Based All-Optical Data Format Follower and Inverter', ACS Photonics, vol. 3, pp. 806-818, 2016. [30] Yariv, A. and P. Yeh, Photonics. Sixth Edition ed. 2006: Oxford University Press. [31] V. A, I., L. Genova, J. Bressiani, and A. Bressiani, 'Review article: Silicon Carbide. Structure, properties and processing', Cerâmica, vol. 46, pp., 2000. [32] Kowbel, W., C. Bruce, K.L. Tsou, K. Patel, J. Withers, and G.E. Youngblood, 'High thermal conductivity SiC/SiC composites for fusion applications', Journal of Nuclear Materials, vol. 283-287, pp. 570-573, 2000. [33] Tai, H.Y., C.T. Lee, L.-H. Tsai, Y.-H. Lin, Y.-H. Pai, C.I. Wu, and G.-R. Lin, 'SiC and Si Quantum Dots Co-Precipitated Si-Rich SiC Film with n- and p-Type Dopants Grown by Hydrogen-Free PECVD', ECS Journal of Solid State Science and Technology, vol. 2, pp. N159-N164, 2013. [34] Tauc, J., R. Grigorovici, and A. Vancu, 'Optical Properties and Electronic Structure of Amorphous Germanium', physica status solidi (b), vol. 15, pp. 627-637, 1966. [35] Davis, E.A. and N.F. Mott, 'Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors', Philosophical Magazine, vol. 22, pp. 0903-0922, 1970. [36] Sheik-Bahae, M., A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, 'Sensitive measurement of optical nonlinearities using a single beam', IEEE Journal of Quantum Electronics, vol. 26, pp. 760-769, 1990. [37] Boyd, R.W., Chapter 1 - The Nonlinear Optical Susceptibility, in Nonlinear Optics (Third Edition), R.W. Boyd, Editor. 2008, Academic Press: Burlington. p. 1-67. [38] Mickelson, A.R., Maxwell’s Equations and Plane Wave Propagation, in Physical Optics, A.R. Mickelson, Editor. 1992, Springer US: Boston, MA. p. 7-87. [39] Arecchi, F. and R. Bonifacio, 'Theory of optical maser amplifiers', IEEE Journal of Quantum Electronics, vol. 1, pp. 169-178, 1965. [40] Boyd, R.W., Chapter 4 - The Intensity-Dependent Refractive Index, in Nonlinear Optics (Third Edition), R.W. Boyd, Editor. 2008, Academic Press: Burlington. p. 207-252. [41] May, M., S. Debrus, K. Zakrzewska, H. Benisty, and A. Chevy, 'Room-temperature optical nonlinearities in bulk GaSe', Journal of the Optical Society of America B, vol. 14, pp. 1048-1056, 1997. [42] Bindra, K.S., S.M. Oak, and K.C. Rustagi, 'Intensity dependence of Z-scan in semiconductor-doped glasses for separation of third and fifth order contributions in the below band gap region', Optics Communications, vol. 168, pp. 219-225, 1999. [43] Garmire, E., 'Nonlinear optics in daily life', Opt Express, vol. 21, pp. 30532-44, 2013. [44] Wu, C.-L., Y.-H. Lin, C.-H. Cheng, S.-P. Su, B.-J. Huang, J.-H. Chang, C.-I. Wu, C.-K. Lee, and G.-R. Lin, 'Enriching Si quantum dots in a Si-rich SiNx matrix for strong χ(3) optical nonlinearity', Journal of Materials Chemistry C, vol. 4, pp. 1405-1413, 2016. [45] Prakash, G.V., M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, 'Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition', Journal of Applied Physics, vol. 91, pp. 4607-4610, 2002. [46] Lin, G.-R., T.-C. Lo, L.-H. Tsai, Y.-H. Pai, C.-H. Cheng, C.-I. Wu, and P.-S. Wang, 'Finite Silicon Atom Diffusion Induced Size Limitation on Self-Assembled Silicon Quantum Dots in Silicon-Rich Silicon Carbide', Journal of The Electrochemical Society, vol. 159, pp. K35-K41, 2012. [47] Tai, H.-Y., C.-H. Cheng, P.-S. Wang, C.-I. Wu, and G.-R. Lin, 'Nearly warm white-light emission of silicon-rich amorphous silicon carbide', RSC Advances, vol. 5, pp. 105239-105247, 2015. [48] Chih-Hsien, C., W. Chung-Lun, C. Chun-Chieh, T. Ling-Hsuan, L. Yung-Hsiang, and L. Gong-Ru, 'Si-Rich SixC1-x Light-Emitting Diodes With Buried Si Quantum Dots', IEEE Photonics Journal, vol. 4, pp. 1762-1775, 2012. [49] Zhang, H., S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, and P. Kockaert, 'Z-scan measurement of the nonlinear refractive index of graphene', Opt Lett, vol. 37, pp. 1856-8, 2012. [50] Ferrari, A.C., 'Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects', Solid State Communications, vol. 143, pp. 47-57, 2007. [51] Ferrari, A.C. and J. Robertson, 'Interpretation of Raman spectra of disordered and amorphous carbon', Physical Review B, vol. 61, pp. 14095-14107, 2000. [52] Kittel, C., Introduction to Solid State Physics. 8th Edition ed. 2019. [53] Tauc, J., Optical Properties of Solids, ed. F. Abeles. 1972: North-Holland. [54] Tawada, Y., K. Tsuge, M. Kondo, H. Okamoto, and Y. Hamakawa, Properties and structure of a-SiC:H for high-efficiency a-Si solar cell. Vol. 53. 1982. 5273-5281. [55] Urbach, F., 'The long-wavelength edge of photographic sensitivity and electronic absorption of solids', APS Journals, Phys. Rev., vol. 92, pp. 1324, 1953. [56] Studenyak, I., M. Kranjec, and M. Kurik, 'Urbach Rule in Solid State Physics', International Journal of Optics and Applications, vol. 4, pp. 76-83, 2014. [57] Schubert, E.F., Light-Emitting Diodes. Second Edition ed. 2006. [58] Gong-Ru, L., L. Tze-An, and P. Ci-Ling, 'Correlation between Defect Concentration and Carrier Lifetime of GaAs Grown by Molecular Beam Epitaxy at Different Temperatures', Japanese Journal of Applied Physics, vol. 40, pp. 6239, 2001. [59] Junginger, H.g. and W. van Haeringen, 'Energy Band Structures of Four Polytypes of Silicon Carbide Calculated with the Empirical Pseudopotential Method', physica status solidi (b), vol. 37, pp. 709-719, 1970. [60] Bean, J.C., 'Silicon-based semiconductor heterostructures: column IV bandgap engineering', Proceedings of the IEEE, vol. 80, pp. 571-587, 1992. [61] Presting, H., H. Kibbel, M. Jaros, R. M Turton, U. Menczigar, G. Abstreiter, and H. Grimmeiss, 'Ultrathin SimGen strained layer superlattices-a step towards Si optoelectronics', Semiconductor Science and Technology, vol. 7, pp. 1127, 1999. [62] Wen Tse, H., F. Yean Kuen, W.J. Lee, W. Kun-Hsien, H. Jyh-Jier, C. Kui-Huin, and S.Y. Huang, 'An a-SiGe:H phototransistor integrated with a Pd film on glass substrate for hydrogen monitoring', IEEE Transactions on Electron Devices, vol. 47, pp. 939-943, 2000. [63] Yang, C.-C., Y.-H. Lin, and G.-R. Lin, Nonstoichiometric Si1-xGex Based Tunable Saturable Absorber for Mode-Locked Erbium-doped Fiber Laser, in CLEO: 2015. Optical Society of America: San Jose, California. p. JW2A.70. [64] Liu, J.P., A. Domenicucci, A. Madan, J. Li, J. Holt, and J. Sudijono, 'Impact of in situ carbon doping on implant damage and strain relaxation of epitaxial silicon germanium layer on silicon', Appl. Phys. Lett., vol. 88, pp. 151916, 2006. [65] Im, S., J.H. Song, D.Y.C. Lie, F. Eisen, H. Atwater, and M.-A. Nicolet, 'SiGeC alloy layer formation by high-dose implantations into pseudomorphic metastable on Si(100)', Journal of Applied Physics, vol. 81, pp., 1997. [66] Lu, X. and N.W. Cheung, 'Synthesis of SiGe and SiGeC alloys formed by Ge and C implantation', Applied Physics Letters, vol. 69, pp. 1915-1917, 1996. [67] Zheng, L., C. Zhi-Ming, and P. Hong-Bin, 'SiCGe/SiC heterojunction and its MEDICI simulation of optoelectronic characteristics', Chinese Phys, vol. 14, pp., 2005. [68] Chen, Z.M., H.B. Pu, L.M. Wo, G. Lu, L.B. Li, and C.X. Tan, 'Hetero-epitaxial growth of SiCGe on SiC', Microelectronic Engineering, vol. 83, pp. 170-175, 2006. [69] Loup, V., J.M. Hartmann, G. Rolland, P. Holliger, F. Laugier, and M.N. Séméria, 'Growth temperature dependence of substitutional carbon incorporation in SiGeC/Si heterostructures', Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 21, pp., 2003. [70] Huang, B.-J., C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-T. Tsai, C.-H. Cheng, Y.-C. Chi, P.-H. Chang, C.-I. Wu, R.A. Soref, and G.-R. Lin, 'Two-Photon Absorption-Free Ultrafast Optical Switching in Carbon-Rich SixC1−x Microring', Advanced Materials Technologies, vol. 2, pp. 1700095, 2017. [71] Huang, B.-J., C.-T. Tsai, Y.-H. Lin, C.-H. Cheng, H.-Y. Wang, Y.-C. Chi, P.-H. Chang, C.-I. Wu, and G.-R. Lin, 'SiGeC Waveguide for All-Optical Data Switching', ACS Photonics, vol. 5, pp. 2251-2260, 2018. [72] Leifeld, O., A. Beyer, D. Gru¨tzmacher, and K. Kern, 'Nucleation of Ge dots on the C-alloyed Si(001) surface', PHYSICAL REVIEW B, vol. 66, pp., 2002. [73] Portavoce, A., K. Hoummada, A. Ronda, D. Mangelinck, and I. Berbezier, 'Si/Ge intermixing during Ge Stranski-Krastanov growth', Beilstein J Nanotechnol, vol. 5, pp. 2374-82, 2014. [74] Wakino, K. A new proposal on mixing rule of the dielectric constant of mixture. in Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics. 1994. [75] Zakri, T., J.-P. Laurent, and M. Vauclin, 'Theoretical evidence for `Lichtenecker's mixture formulae' based on the effective medium theory', Journal of Physics D: Applied Physics, vol. 31, pp. 1589-1594, 1998. [76] Hohman, J.N., M. Kim, H.R. Bednar, J.A. Lawrence, P.D. McClanahand, and P.S. Weiss, 'Simple, Robust Molecular Self-Assembly on Germanium', Chem. Sci., vol. 2, pp. 1334-1343, 2011. [77] Hume-Rothery, W. and H.M. Powell, 'On the Theory of Super-Lattice Structures in Alloys', Zeitschrift für Kristallographie - Crystalline Materials, vol. 91, pp., 1935. [78] Zhang, X., Y. An, J. Han, W. Han, G. Zhao, and X. Jin, 'Graphene nanosheet reinforced ZrB2–SiC ceramic composite by thermal reduction of graphene oxide', RSC Adv., vol. 5, pp., 2015. [79] Fauquier, L., B. Pelissier, D. Jalabert, F. Pierre, J.M. Hartmann, F. Rozé, D. Doloy, D. Le Cunff, C. Beitia, and T. Baron, 'Benefits of XPS nanocharacterization for process development and industrial control of thin SiGe channel layers in advanced CMOS technologies', Materials Science in Semiconductor Processing, vol. 70, pp. 105-110, 2017. [80] Kleykamp, H., Gibbs energy of formation of SIC: A contribution to the thermodynamic stability of the modifications. Vol. 102. 1998. 1231-1234. [81] Sreedharan, O.M., E. Athiappan, R. Pankajavalli, and J.B. Gnanamoorthy, 'The free energy of formation of GeO2(hex) by e.m.f. measurements', Journal of the Less Common Metals, vol. 68, pp. 143-152, 1979. [82] Tsai, H.-S., Y.-Z. Chen, H. Medina, T.-Y. Su, T.-S. Chou, Y.-H. Chen, Y.-L. Chueh, and J.H. Liang, Direct Formation of Large-Scale Multi-Layered Germanene on Si Substrate. Vol. 17. 2015. [83] Pagès, O., J. Souhabi, V.J.B. Torres, A.V. Postnikov, and K.C. Rustagi, 'Re-examination of the SiGe Raman spectra: Percolation/one-dimensional-cluster scheme andab initiocalculations', Physical Review B, vol. 86, pp. 045201, 2012. [84] Sasinková, V., J. Huran, A. Kleinová, P. Boháček, J. Arbet, and M. Sekáčov, 'Raman spectroscopy study of SiC thin films prepared by PECVD for solar cell working in hard environment', Proceedings of the SPIE, vol. 9563, pp., 2015. [85] Lau, S.P., J.M. Marshall, and L.R. Tessler, 'Optoelectronic properties of highly conductive microcrystalline SiC produced by laser crystallisation of amorphous SiC', Journal of Non-Crystalline Solids, vol. 198-200, pp. 907-910, 1996. [86] Feng, D.H., T.Q. Jia, X.X. Li, Z.Z. Xu, J. Chen, S.Z. Deng, Z.S. Wu, and N.S. Xu, 'Catalytic synthesis and photoluminescence of needle-shaped 3C–SiC nanowires', Solid State Communications, vol. 128, pp. 295-297, 2003. [87] Rossi, A.M., T.E. Murphy, and V. Reipa, 'Ultraviolet photoluminescence from 6H silicon carbide nanoparticles', Applied Physics Letters, vol. 92, pp. 253112, 2008. [88] Addamiano, A., 'Photoluminescence and Polytypism in Boron Doped Silicon Carbide', Journal of The Electrochemical Society, vol. 111, pp. 1294-1294, 1964. [89] Kumbhar, A., S.B. Patil, S. Kumar, R. Lal, and R.O. Dusane, 'Photoluminescent, wide-bandgap a-SiC:H alloy films deposited by Cat-CVD using acetylene', Thin Solid Films, vol. 395, pp. 244-248, 2001. [90] Fan, J.Y., H.X. Li, Q.J. Wang, D.J. Dai, and P.K. Chu, 'Erratum: “UV-blue photoluminescence from close-packed SiC nanocrystal film” [Appl. Phys. Lett. 98, 081913 (2011)]', Applied Physics Letters, vol. 99, pp. 049901, 2011. [91] Lin, S.S., 'Light-Emitting Two-Dimensional Ultrathin Silicon Carbide', The Journal of Physical Chemistry C, vol. 116, pp. 3951-3955, 2012. [92] Xu, J., T. Ma, K. Chen, J. Du, X. Huang, and D. Feng, 'The improvement on blue light emission from hydrogenated amorphous silicon carbide films prepared from an organic source', Journal of Non-Crystalline Solids, vol. 227-230, pp. 470-473, 1998. [93] Pirouz, P. and J.W. Yang, 'Polytypic transformations in SiC: the role of TEM', Ultramicroscopy, vol. 51, pp. 189-214, 1993. [94] Bhatnagar, M. and B.J. Baliga, 'Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices', IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 40, pp., 1993. [95] Boucaud, P., C. Guedj, D. Bouchier, F.H. Julien, J.-M. Lourtioz, S. Bodnar, J.L. Regolini, and E. Finkman, 'Optical properties of bulk and multi-quantum well SiGe:C heterostructures', Journal of Crystal Growth, vol. 157, pp. 410-413, 1995. [96] Boucaud, P., C. Guedj, F.H. Julien, E. Finkman, S. Bodnar, and J.L. Regolini, 'Growth of Si1-x-yGexCy multi-quantum wells: structural and optical properties', Thin Solid Films, vol. 278, pp. 114-117, 1996. [97] Boucaud, P., J.-M. Lourtioz, F.H. Julien, P. Warren, and M. Dutoit, 'Intersubband absorption in Si/Si1-x-yGexCy quantum wells', Appl. Phys. Lett., vol. 69, pp., 1996. [98] Brunner, K., W. Winter, and K. Eberl, 'Spatially indirect radiative recombination of carriers localized in Si1-x-yGexCy/Si1-yCy double quantum well structure on Si substrates', Appl. Phys. Lett., vol. 69, pp., 1966. [99] Warren, P., M. Dutoit, P. Boucaud, J.M. Lourtioz, and F.H. Julien, 'RTCVD growth and characterization of SiGeC multi-quantum wells', Thin Solid Films, vol. 294, pp. 125-128, 1997. [100] Eberl, K., K. Brunner, and W. Winter, 'Pseudomorphic Si1-yCy and Si1-x-yGexCy alloy layers on Si', Thin Solid Films, vol. 294, pp. 98-104, 1997. [101] Brunner, K., W. Winter, K. Eberl, N.Y. Jin-Phillipp, and F. Phillipp, 'Fabrication and band alignment of pseudomorphic Si1-yCy, Si1-x-yGexCy and coupled quantum well structures on Si substrates', Journal of Crystal Growth, vol. 175-176, pp. 451-458, 1997. [102] Chaisakul, P., D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, 'Integrated germanium optical interconnects on silicon substrates', Nature Photonics, vol. 8, pp. 482-488, 2014. [103] Moeen, M., M. Kolahdouz, A. Salemi, A. Abedin, M. Östling, and H.H. Radamson, 'Improved designs of Si-based quantum wells and Schottky diodes for IR detection', Thin Solid Films, vol. 613, pp. 19-23, 2016. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74201 | - |
dc.description.abstract | 將C-C和C=C鍵的共軛鏈嵌入碳化矽(SiC)基質中,因大量的π電子促進光學非線性增強。以PECVD生長技術製程C/Si組成比從0.98到1.12的的含有類金剛石C-C和類石墨的C=C鍵的富碳碳化矽。增加的C/Si組成比不僅將SiC能寬從2.3eV擴展到2.5eV,而且由於間隙碳共軛鏈的吸收而引起拖尾基峰,擴大了非線性吸收係數。合成的SiC薄膜的β’隨C/Si比的增加從702到2621cm/GW。這些伴隨著類石墨的C=C鍵且具有短鍵長和較小有效質量的離域π電子,大大提高了SiC的非線性折射率,從4.65×10-11到6.23×10-11cm2/W。對不同組成比例的Si1-x-yGexCy材料的生長機理和光學非線性進行了論證和討論。隨著較高的C和較低的Ge,生長機制是F-M模式的增長。富Ge元素促進SiC複合物的合成,並由SK模式生長而生成島狀表面。在島結構的底部的非均質成長的核為FCC晶體結構的C。此外,可以在島結構的頂部觀察到Si1-x-yGexCy的FCC結構。調整Si-Si,Ge-Ge和C=C的組成比例,有可能將Si1-x-yGexCy的非線性折射率擴大到10x-11cm2/W。通過植入大量C=C鍵使Si1-x-yGexCy形成富碳結構,有助於表現出更大的n2值,以促進克爾效應,從而增強非線性光學開關應用。 | zh_TW |
dc.description.abstract | By embedding the C-C and C=C bond related conjugated chains into the silicon carbide (SiC) matrix, the enriched π-electrons can be realized to facilitate the optical nonlinearity enhancement. The C-rich SiC with different concentrations of buried diamond-like C-C and graphite-like C=C bonds as synthesized by varying the C/Si composition ratio from 0.98 to 1.12 during PECVD growth. The increased C/Si composition ratio not only extends the SiC band edge from 2.3 eV to 2.5 eV, but also induces trailing pedestal peaks due to the absorption of the interstitial carbon conjugated chains which enlarges the nonlinear absorption coefficient of the synthesized SiC film from 702 to 2621 cm/GW. These delocalized π-electrons with short displacement and small effective mass accompanied with graphite-like C=C bond greatly enhances the nonlinear refractive index of the SiC from 4.65×10-11 to 6.23×10-11 cm2/W.The growth mechanism and optical nonlinearity of the Si1-x-yGexCy material synthesized with different s are demonstrated and discussed. With higher C and under low Ge, the growth mechanism is the F-K mode growth. The enrich Ge facilitates the synthesis of aforementioned SiC composites to form the islands-like surface caused by SK-mode growth. The heterogeneous C nucleus exhibits the FCC crystalline structure in the bottom of the island structure. The FCC structures of Si1-x-yGexCy can be observed on the top of island structure. Designing the Si1-x-yGexCy with the Si-Si, Ge-Ge, and C=C enlarge its nonlinear refractive index to 10x-11 cm2/W. By detuning the C-rich Si1-x-yGexCy with plenty of C=C bonds, the Si1-x-yGexCy exhibits larger n2 value to facilitate the Kerr effect for enhancing the nonlinear optical switching applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:24:05Z (GMT). No. of bitstreams: 1 ntu-108-R03941129-1.pdf: 2353967 bytes, checksum: a1b1db45f79bf3408342d5f5cd58ee00 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xiii CHAPTER 1 INTRODUCTION 1 1.1 HISTORY REVIEW OF SILICON CARBIDE AND ITS OPTICAL NONLINEARITY 1 1.2 CHARACTERISTIC AND APPLICATIONS OF NONLINEAR MATERIAL 4 1.3 MOTIVATION 4 1.4 ORGANIZATION OF THESIS 5 CHAPTER 2 EMBEDDING LONG CARBON CONJUGATED CHAIN WITH ENRICHED P ELECTRON PAIRS IN SIC MATRIX FOR OPTICAL NONLINEARITY ENHANCEMENT 6 2.1 INTRODUCTION 6 2.2 EXPERIMENTAL 6 2.3 ABSORPTION AND EXTINCTION COEFFICIENT THEORY 8 2.4 NON-LINEAR OPTICAL PROPERTIES 10 2.5 Z-SCAN TECHNOLOGY 15 2.6 NONLINEAR ABSORPTION EFFECT 18 2.7 NONLINEAR ABSORPTION CHARACTERISTICS OF SATURATED ABSORBERS 19 2.8 ANALYSIS OF C-RICH SIXC1-X COMPOSITION BY USING XPS 21 2.9 RAMAN SCATTERING SPECTRA 26 2.10 PL SPECTRUM 27 2.11 N&K CURVE 29 2.12 TAUC PLOT 30 2.13 URBACH ENERGY 35 2.14 THE ENHANCED NONLINEAR OPTICAL KERR EFFECT IN THE C-RICH FLUENCE RATIO OF SATURATED ABSORBERS 37 2.15 NONLINEAR N2 40 2.16 SUMMARY 43 CHAPTER 3 COMPOSITION RATIO DEPENDENT GROWTH MECHANISM AND OPTICAL NONLINEARITY OF SI1-X-YGEXCY ON SI WAFER 45 3.1 INTRODUCTION 45 3.2 EXPERIMENTAL SETUP 47 3.3 MODEL AND SIMULATION 49 3.4 MATERIAL CHARACTERISTICS OF SI1-X-YGEXCY FILM WITH DIFFERENT [CH4]/[SIH4+CH4+GEH4] FLUENCE RATIOS 53 3.5 MATERIAL CHARACTERISTICS OF GE-RICH SI1-X-YGEXCY FILM WITH DIFFERENT [GEH4] FLOWS 66 3.6 TEM ANALYSIS OF SI1-X-YGEXCY FILM 77 3.7 SUMMARY 81 CHAPTER 4 THE MATERIAL CHARACTERISTIC OF SIC/GEC MULTIPLE QUANTUM WELL STRUCTURE 85 4.1 INTRODUCTION 85 4.2 EXPERIMENTAL SETUP 87 4.3 TEM IMAGE OF SIC/GEC MQW FILM 88 4.4 TR SPECTRUM OF SIC/GEC MQW FILM 90 CHAPTER 5 CONCLUSION 91 REFERENCE 94 | |
dc.language.iso | en | |
dc.title | IV族碳化矽與矽鍺碳化合物半導體非線性光學 | zh_TW |
dc.title | Nonlinear Optics of Group-IV SiC and SiGeC Semiconductors | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃定洧(Ding-Wei Huang),張書維(Shu-Wei Chang),謝嘉民(Jia-Min Shieh),李翔傑(Shiang-Chieh Li) | |
dc.subject.keyword | 非線性光學折射率,矽化碳,矽鍺碳,克爾效應,雙光子效應, | zh_TW |
dc.subject.keyword | nonlinear refractive index,SiC,SiGeC,Kerr effect,TPA effect, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU201901602 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。