Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor席行正
dc.contributor.authorWei Taien
dc.contributor.author戴瑋zh_TW
dc.date.accessioned2021-06-17T08:23:58Z-
dc.date.available2026-08-13
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citationAcosta, J. A., Faz, A., Martínez-Martínez, S., Zornoza, R., Carmona, D. M., and Kabas, S. (2011). Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. Journal of Geochemical Exploration, 109(1), 8-17.
Alam, S. N., Sharma, N., and Kumar, L. (2017). Synthesis of graphene oxide (Go) by modified hummers method and its thermal reduction to obtain reduced graphene oxide. Graphene, Vol.6 No.1(4), 1-18.
Albers, J. W., Kallenbach, L. R., Fine, L. J., Langolf, G. D., Wolfe, R. A., Donofrio, P. D., Alessi, A. G., Stolpsmith, K. A., and Bromberg, M. B. (1988). Neurological abnormalities associated with remote occupational elemental mercury exposure. Annals of Neurology, 24(5), 651-659.
Almeida, P., and Stearns, L. B. (1998). Political opportunities and local grassroots environmental movements: The case of Minamata. Social Problems, 45(1), 37-60.
Asheh, A., Sameer, and Duvnjak, Z. (1998). Binary metal sorption by pine bark: Study of equilibria and mechanisms. Separation Science and Technology, 33(9), 1303-1329.
Atwood, D. A., and Zaman, M. K. (2006). Mercury removal from water. In D. A. Atwood (Ed.), Recent Developments in Mercury Science (Vol. 120, pp. 163-182). Berlin: Springer-Verlag Berlin.
Aydın, H., and İlkılıç, C. (2012). Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel, 102, 605-612.
Aylón, E., Fernández, C. A., Murillo, R., Navarro, M. V., García, T., and Mastral, A. M. (2010). Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 30(7), 1220-1224.
Bajpai, A. K., Dubey, R., and Bajpai, J. (2017). Synthesis, characterization, and adsorption properties of a graphene composite sand (GCS) and is application in remediation of Hg(II) ions. Water Air and Soil Pollution, 228(9), 19.
Banar, M., Akyıldız, V., Özkan, A., Çokaygil, Z., and Onay, Ö. (2012). Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel). Energy Conversion and Management, 62, 22-30.
Berlin, M., and Ullberg, S. (1963). Accumulation and retention of mercury in the mouse. Archives of Environmental Health, 6(5), 610-616.
Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32(5), 759-769.
Burger, J., and Gochfeld, M. (2011). Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Science of the Total Environment, 409(8), 1418-1429.
Cantor, M. O. (1951). Mercury lost in the gastrointestinal tract; report of an unusual case. Jama-Journal of the American Medical Association, 146(6), 560-561.
Cassano, G. B., Viola, P. L., Ghetti, B., and Amaducci, L. (1969). The distribution of inhaled mercury(Hg203) vapors in the brain of rats and mice. Journal of Neuropathology and Experimental Neurology, 28(2), 308-320.
Çeçen, F. (2014). Activated Carbon. In In Kirk‐Othmer Encyclopedia of Chemical Technology (pp. 1-34). Hoboken, New Jersey: John Wiley & Sons, Inc.
Chang, L. W. (1977). Neurotoxic effects of mercury—A review. Environmental Research, 14(3), 329-373.
Chang, L. W., and Hartmann, H. A. (1972). Blood-brain barrier dysfunction in experimental mercury intoxication. Acta Neuropathologica, 21(3), 179-184.
Charerntanyarak, L. (1999). Heavy metals removal by chemical coagulation and precipitation. Water Science and Technology, 39(10), 135-138.
Chien, L. C., Hung, T. C., Choang, K. Y., Yeh, C. Y., Meng, P. J., Shieh, M. J., and Han, B. C. (2002). Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Science of the Total Environment, 285(1), 177-185.
Clarkson, T. W. (1993). Mercury: major issues in environmental health. Environmental Health Perspectives, 100, 31-38.
Clarkson, T. W., Cernichiari, E., Zareba, G., and Myers, G. J. (2006). Biomarkers for methyl mercury. Neurotoxicology, 27(6), 1169-1169.
Clarkson, T. W., and Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609-662.
Conesa, J. A. Martin, G. I. Font, R., and Jauhiainen, J. (2004). Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environmental Science & Technology, 38(11), 3189-3194.
Corapcioglu, M. O., and Huang, C. P. (1987). The adsorption of heavy metals onto hydrous activated carbon. Water Research, 21(9), 1031-1044.
Costa, G. A., and Santos, R. G. d. (2019). Fractionation of tire pyrolysis oil into a light fuel fraction by steam distillation. Fuel, 241, 558-563.
Cuhadaroglu, D., and Uygun, O. A. (2008). Production and characterization of activated carbon from a bituminous coal by chemical activation. African Journal of Biotechnology, 7(20), 3706-3713.
Cunliffe, A. M., and Williams, P. T. (1998). Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis, 44(2), 131-152.
Dai, X., Yin, X., Wu, C., Zhang, W., and Chen, Y. (2001). Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy, 26(4), 385-399.
Davidson, P. W., Myers, G. J., and Weiss, B. (2004). Mercury exposure and child development outcomes. Pediatrics, 113(4), 1023-1029.
Deng, Y., Morris, C., Rakshit, S., Landa, E., Punamiya, P., and Sarkar, D. (2016). Water treatment residuals and scrap tire rubber as green sorbents for removal of stormwater metals. Water Environment Research, 88(6), 500-509.
Dimpe, K. M., Ngila, J. C., and Nomngongo, P. N. (2017). Application of waste tyre-based activated carbon for the removal of heavy metals in wastewater. Cogent Engineering, 4(1), 1330912.
Dreyer, D. R., Park, S., Bielawski, C. W., and Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240.
Eto, K. (1997). Pathology of Minamata disease. Toxicologic Pathology, 25(6), 614-623.
Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J., and Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Separation and Purification Technology, 50(1), 132-140.
Freeman, J. J., and McLeod, A. I. (1983). Nitrogen BET surface area measurement as a fingerprint method for the estimation of pore volume in active carbons. Fuel, 62(9), 1090-1091.
Gauthier, M. P., Valderrama, Y. C., and Nabarlatz, D. (2019). Mathematical model of scrap tire rubber pyrolysis in a non-isothermal fixed bed reactor: definition of a chemical mechanism and determination of kinetic parameters. Waste and Biomass Valorization, 10(3), 561-573.
Ghodbane, I., and Hamdaoui, O. (2008). Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies. Journal of Hazardous Materials, 160(2-3), 301-309.
Gibb, H., and O'Leary, K. G. (2014). Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environmental Health Perspectives, 122(7), 667-672.
Gomez, S. V., Macias, G. A., Espinosa, M. A., and Valenzuela-Calahorro, C. (1998). Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon. Water Research, 32(1), 1-4.
Hadi, P. T., M. H. Hui, C. W. Lin, C. S. K., and McKay, G. (2015). Aqueous mercury adsorption by activated carbons. Water Research, 73, 37-55.
Ho, Y. S., and McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465.
Hsi, H. C., and Chen, C. T. (2012). Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfur-impregnated activated carbon. Fuel, 98, 229-235.
Hsi, H. C., Tsai, C. Y. Kuo, T. H., and Chiang, C. S. (2011). Development of low-concentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation. Bioresource Technology, 102(16), 7470-7477.
Hsi, H., C., Rood, M. J., Rostam-Abadi, M., Chen, S., and Chang, R. (2001). Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFS). Environmental Science & Technology, 35(13), 2785-2791.
Hummers, W. S., and Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
Hunter, R. J. (1981). Chapter 1 - Introduction. In R. J. Hunter (Ed.), Zeta Potential in Colloid Science (pp. 1-10): Academic Press.
I. R. Chen, W. C. Yuan, C. S. Hung, C. H. Lin, Y. C. Tsai, H. H., and Jen, Y. S. (2012). Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon. Journal of Hazardous Materials, 217-218, 43-50.
Inbaraj, B. S., and Sulochana, N. (2006). Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. Journal of Hazardous Materials, 133(1-3), 283-290.
Ioannidou, O., and Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renewable and Sustainable Energy Reviews, 11(9), 1966-2005.
Islam, M. R., Haniu, H., and Beg, M. R. A. (2008). Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties. Fuel, 87(13-14), 3112-3122.
Jia, L. Fan, B. G. Yao, Y. X. Han, F. Huo, R. P. Zhao, C. W., and Jin, Y. (2018). Study on the elemental mercury adsorption characteristics and mechanism of iron-based modified biochar materials. Energy & Fuels, 32(12), 12554-12566.
Jia, Y. F., Xiao, B., and Thomas, K. M. (2002). Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir, 18(2), 470-478.
Jilani, A., Iqbal, J., Abdel-Wahab, M. S., Jamil, Y., and Al-Ghamdi, A. A. (2016). X-ray photoelectron spectroscopic (XPS) investigation of interface diffusion of ZnO/Cu/Zno mulitlayer. Journal of Optoelectronic and Biomedical Materials, 8(1), 27-31.
Kalitko, U., and Wu, M. C. Y. (2009). Tire scrap pyrolysis recycling by steaming way: Heat-mass balance solutions and developments. In Material Recycling: Trends and Perspectives (pp. 79-115). Hauppauge, NY: Nova Science Publishers.
Kaminsky, W., Mennerich, C., and Zhang, Z. (2009). Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed. Journal of Analytical and Applied Pyrolysis, 85(1), 334-337.
Kar, Y. (2011). Catalytic pyrolysis of car tire waste using expanded perlite. Waste Management, 31(8), 1772-1782.
Kikuchi, Y., Qian, Q., Machida, M., and Tatsumoto, H. (2006). Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution. Carbon, 44(2), 195-202.
Kim, K. H., Kabir, E., and Jahan, S. A. (2016). A review on the distribution of Hg in the environment and its human health impacts. Journal of Hazardous Materials, 306, 376-385.
Knocke, W. R., and Hemphill, L. H. (1981). Mercury(II) sorption by waste rubber. Water Research, 15(2), 275-282.
Krishnan, S. V., Gullett, B. K., and Jozewicz, W. (1994). Sorption of elemental mercury by activated carbons. Environmental Science & Technology, 28(8), 1506-1512.
Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H., and Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1), 83-98.
Kyzas, G. Z., Deliyanni, E. A., and Matis, K. A. (2014). Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology and Biotechnology, 89(2), 196-205.
Landis, M. S., Ryan, J. V., ter Schure, A. F. H., and Laudal, D. (2014). Behavior of mercury emissions from a commercial coal-fired power plant: The relationship between stack speciation and near-field plume measurements. Environmental Science & Technology, 48(22), 13540-13548.
Laresgoiti, M. F., Caballero, B. M., de Marco, I., Torres, A., Cabrero, M. A., and Chomón, M. J. (2004). Characterization of the liquid products obtained in tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 71(2), 917-934.
Lellala, K., Hayakawa, Y., and Ravi, G. (2014). Microwave Irradiation on Synthesis of High-Quality Graphene Nano Sheets (Vol. 3). Gujarat, India: International journal of engineering sciences & research technology.
Leung, D. Y. C., Yin, X. L., Zhao, Z. L., Xu, B. Y., and Chen, Y. (2002). Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaseous product. Fuel Processing Technology, 79(2), 141-155.
Li, G., Shen, B., and Lu, F. (2015). The mechanism of sulfur component in pyrolyzed char from waste tire on the elemental mercury removal. Chemical Engineering Journal, 273, 446-454.
Li, G., Shen, B., Wang, Y., Yue, S., Xi, Y., An, M., and Ren, K. (2015). Comparative study of element mercury removal by three bio-chars from various solid wastes. Fuel, 145, 189-195.
Li, G., Wang, S., Wang, F., Wu, Q., Tang, Y., and Shen, B. (2017). Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes. Chemical Engineering Journal, 307, 544-552.
Li, N., Ma, X., Zha, Q., Kim, K., Chen, Y., and Song, C. (2011). Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry. Carbon, 49(15), 5002-5013.
Li, S. Q., Yao, Q., Chi, Y., Yan, J. H., and Cen, K. F. (2004). Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & Engineering Chemistry Research, 43(17), 5133-5145.
Li., Ma, Z. W., van der Kuijp, T. J., Yuan, Z. W., and Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843-853.
Liu, H., You, Z. W., Yang, S., Liu, C., Xie, X. F., Xiang, K. S., Wang, X. Y., and Yan, X. (2019). High-efficient adsorption and removal of elemental mercury from smelting flue gas by cobalt sulfide. Environmental Science and Pollution Research, 26(7), 6735-6744.
Liu, S. (2015). Cooperative adsorption on solid surfaces. Journal of Colloid and Interface Science, 450, 224-238.
Liu, W., Vidic, R. D., and Brown, T. D. (2000a). Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. Environmental Science & Technology, 34(1), 154-159.
Liu, W., Vidic, R. D., and Brown, T. D. (2000b). Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors. Environmental Science & Technology, 34(3), 483-488.
Lo, S. F., Wang, S. Y., Tsai, M. J., and Lin, L. D. (2012). Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research & Design, 90(9), 1397-1406.
Lopez-Anton, M. A., Perry, R., Abad-Valle, P., Díaz, S. M., Martínez-Tarazona, M. R., and Maroto-Valer, M. M. (2011). Speciation of mercury in fly ashes by temperature programmed decomposition. Fuel Processing Technology, 92(3), 707-711.
Lopez, G., Olazar, M., Aguado, R., Elordi, G., Amutio, M., Artetxe, M., and Bilbao, J. (2010). Vacuum Pyrolysis of Waste Tires by Continuously Feeding into a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 49(19), 8990-8997.
Luo, S., and Feng, Y. (2017). The production of fuel oil and combustible gas by catalytic pyrolysis of waste tire using waste heat of blast-furnace slag. Energy Conversion and Management, 136, 27-35.
Machida, M., Yamazaki, R., Aikawa, M., and Tatsumoto, H. (2005). Role of minerals in carbonaceous adsorbents for removal of Pb(II) ions from aqueous solution. Separation and Purification Technology, 46(1), 88-94.
Magos, L., and Clarkson, T. W. (2006). Overview of the clinical toxicity of mercury. Annals of Clinical Biochemistry, 43, 257-268.
Mahaffey, K. R. (1999). Methylmercury: A new look at the risks. Public Health Reports, 114(5), 396-399, 402-413.
Manchon, V., E., Macias, G., A., Gisbert, A. N., Fernandez, G., C., and Gomez, S., V. (2005). Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes. Journal of Hazardous Materials, 119(1-3), 231-238.
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, W., and Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. Acs Nano, 4(8), 4806-4814.
Marsh, H., and Rodríguez, R., Francisco. (2006). Activation Processes (Thermal or Physical). In Activated Carbon (pp. 243-321). Oxford: Elsevier Science Ltd.
Martinez, J. D., Puy, N., Murillo, R., Garcia, T., Navarro, M. V., and Mastral, A. M. (2013). Waste tyre pyrolysis - A review. Renewable & Sustainable Energy Reviews, 23, 179-213.
Mercer, J. J., Bercovitch, L., and Muglia, J. J. (2012). Acrodynia and hypertension in a young girl secondary to elemental mercury toxicity acquired in the home. Pediatric Dermatology, 29(2), 199-201.
Min, H., Ahmad, T., and Lee, S. S. (2017). Mercury Adsorption Characteristics as Dependent upon the Physical Properties of Activated Carbon. Energy & Fuels, 31(1), 724-729.
Miranda, M., Pinto, F., Gulyurtlu, I., and Cabrita, I. (2013). Pyrolysis of rubber tyre wastes: A kinetic study. Fuel, 103, 542-552.
Mirmiran, S., Pakdel, H., and Roy, C. (1992). Characterization of used tire vacuum pyrolysis oil: Nitrogenous compounds from the naphtha fraction. Journal of Analytical and Applied Pyrolysis, 22(3), 205-215.
Mochida, I., Kawano, S., Fujitsu, H., and Maeda, T. (1992). Reduction of No with NH3 in wet air at room temperature over active carbon fibers further activated with sulfuric acid. Nippon Kagaku Kaishi(3), 275-281.
Mohan, D., Gupta, V. K., Srivastava, S. K., and Chander, S. (2001). Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 177(2-3), 169-181.
Mohan, D., Pittman, C. U., and Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20(3), 848-889.
Namasivayam, C., and Sangreetha, D. (2006). Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon. Journal of Hazardous Materials, 135(1-3), 449-452.
Nunes, M. R., Perez, G. M., Loguercio, L. F., Alves, E. W., Carreño, N. L. V., Martins, J. L., and Garcia, I. T. S. (2011). Active carbon preparation from treads of tire waste for dye removal in waste water. Journal of the Brazilian Chemical Society, 22(11), 2027-2035.
Olazar, M., Aguado, R., Arabiourrutia, M., Lopez, G., Barona, A., and Bilbao, J. (2008). Catalyst effect on the composition of tire pyrolysis products. Energy & Fuels, 22(5), 2909-2916.
Ozcan, H., and Dincer, I. (2018). Comprehensive energy systems. In I. Dincer (Ed.), Comprehensive Energy Systems (Vol. volume, pp. 5540). Amsterdam, Nederland: Elsevier.
Pakdel, H., Pantea, D. M., and Roy, C. (2001). Production of dl-limonene by vacuum pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis, 57(1), 91-107.
Panday, K. K., Prasad, G., and Singh, V. N. (1985). Copper(II) removal from aqueous solutions by fly ash. Water Research, 19(7), 869-873.
Parthasarathy, P., Choi, H. S., Park, H. C., Hwang, J. G., Yoo, H. S., Lee, B. K., and Upadhyay, M. (2016). Influence of process conditions on product yield of waste tyre pyrolysis- A review. Korean Journal of Chemical Engineering, 33(8), 2268-2286.
Qiu, L., Zhai, Y. B., Chen, H. M., Liu, X. T., Zhu, L., Li, C. T., and Zeng, G. M. (2018). Removal of elemental mercury from simulated flue gas by a novel composite sulfurized activated carbon. Energy Sources Part a-Recovery Utilization and Environmental Effects, 40(4), 381-387.
Quek, A., Zhao, X. S., and Balasubramanian, R. (2010). Mechanistic insights into copper removal by pyrolytic tire char through equilibrium studies. Industrial & Engineering Chemistry Research, 49(10), 4528-4534.
Rao, M. M., Reddy, D., Venkateswarlu, P., and Seshaiah, K. (2009). Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. Journal of Environmental Management, 90(1), 634-643.
Reichman, S. M., Asher, C. J., Mulligan, D. R., and Menzies, N. W. (2001). Seedling responses of three Australian tree species to toxic concentrations of zinc in solution culture. Plant and Soil, 235(2), 151-158.
Rodríguez, R., F., and Molina, S., M. (1992). Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon, 30(7), 1111-1118.
Roy, C., Chaala, A., and Darmstadt, H. (1999). The vacuum pyrolysis of used tires: End-uses for oil and carbon black products. Journal of Analytical and Applied Pyrolysis, 51(1), 201-221.
Rumayor, M., Gallego, J. R., Rodríguez-Valdés, E., and Díaz-Somoano, M. (2017). An assessment of the environmental fate of mercury species in highly polluted brownfields by means of thermal desorption. Journal of Hazardous Materials, 325, 1-7.
Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. New York: Wiley.
Saeed, A., Iqbal, M., and Akhtar, M. W. (2005). Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Journal of Hazardous Materials, 117(1), 65-73.
Shulman, V. L. (2004). Tyre recycling. Shawbury, Shrewsbury, Shropshire, U.K.: Rapra Technology Ltd.
Sinha, R. K., and Walker, P. L. (1972). Removal of Mercury by Sulfurized Carbons. Carbon, 10(6), 754-756.
Sowlat, M. H., Abdollahi, M., Gharibi, H., Yunesian, M., and Rastkari, N. (2014). Removal of vapor-phase elemental mercury from stack emissions with sulfur-impregnated activated carbon. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology, Vol 230 (Vol. 230, pp. 1-34). Cham: Springer Int Publishing.
Spence, R., and Barton, J. (2003). Stabilization of Mercury in High pH Tank Sludges. Paper presented at the conference, United States.
Sun, J. A., Hippo, E. J., Marsh, H., Obrien, W. S., and Crelling, J. C. (1997). Activated carbon produced from an Illinois basin coal. Carbon, 35(3), 341-352.
Swan, J. W., and Furst, E. M. (2012). A simpler expression for Henry’s function describing the electrophoretic mobility of spherical colloids. Journal of Colloid and Interface Science, 388(1), 92-94.
Syversen, T., and Kaur, P. (2012). The toxicology of mercury and its compounds. Journal of Trace Elements in Medicine and Biology, 26(4), 215-226.
Tünay, O., and Kabdaşli, N. I. (1994). Hydroxide precipitation of complexed metals. Water Research, 28(10), 2117-2124.
Terzyk, A. P. (2001). The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(1), 23-45.
Thomas, B. S., and Gupta, R. C. (2016). A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable & Sustainable Energy Reviews, 54, 1323-1333.
Torres, P., J., Soria-Serna, L. A., Solache-Rios, M., and McKay, G. (2015). One step carbonization/activation process for carbonaceous material preparation from pecan shells for tartrazine removal and regeneration after saturation. Adsorption Science & Technology, 33(10), 895-913.
UNEP. (2019). Global Mercury Assessment 2018. Geneva, Switzerland: Chemicals and Health Branch
USEPA. (2012). EPA Announces Mercury and Air Toxics Standards (MATS) for Power Plants - Rules and Fact Sheets. Washington, D.C.: Federal Register
Velo-Gala, I., López-Peñalver, J. J., Sánchez-Polo, M., and Rivera-Utrilla, J. (2014). Surface modifications of activated carbon by gamma irradiation. Carbon, 67, 236-249.
Vidic, R. D., and McLaughlin, J. B. (1996). Uptake of elemental mercury vapors by activated carbons. Journal of the Air & Waste Management Association, 46(3), 241-250.
Villaescusa, I., Fiol, N., Martı́nez, M. a., Miralles, N., Poch, J., and Serarols, J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38(4), 992-1002.
Wang, F., Wang, S., Meng, Y., Zhang, L., Wu, Q., and Hao, J. (2016). Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion. Fuel, 163, 232-239.
Wang, T., Liu, J., Zhang, Y., Zhang, H., Chen, W.-Y., Norris, P., and Pan, W.-P. (2018). Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal. Chemical Engineering Journal, 331, 536-544.
Wang, W. C., Bai, C. J., Lin, C.T., and Prakash, S. (2016). Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine. Applied Thermal Engineering, 93, 330-338.
Wang, X. S., Li, Z. Z., and Sun, C. (2009). A comparative study of removal of Cu(II) from aqueous solutions by locally low-cost materials: marine macroalgae and agricultural by-products. Desalination, 235(1), 146-159.
Ware, R. A., Chang, L. W., and Burkholder, P. M. (1974). An ultrastructural study on the blood-brain barrier dysfunction following mercury intoxication. Acta Neuropathologica, 30(3), 211-224.
Warkany, J., and Hubbard, D. M. (1953). Acrodynia and mercury. Journal of Pediatrics, 42(3), 365-386.
Williams, P. T. (2013). Pyrolysis of waste tyres: A review. Waste Management, 33(8), 1714-1728.
Williams, P. T., Besler, S., and Taylor, D. T. (1990). The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. Fuel, 69(12), 1474-1482.
Williams, P. T., Bottrill, R. P., and Cunliffe, A. M. (1998). Combustion of tyre pyrolysis oil. Process Safety and Environmental Protection, 76(4), 291-301.
Williams, P. T., and Brindle, A. J. (2003). Fluidised bed pyrolysis and catalytic pyrolysis of scrap tyres. Environmental Technology, 24(7), 921-929.
Wu, W. Q., Yang, Y., Zhou, H. H., Ye, T. T., Huang, Z. Y., Liu, R., and Kuang, Y. F. (2013). Highly efficient removal of cu(ii) from aqueous solution by using graphene oxide. Water Air and Soil Pollution, 224(1), 8.
Xu, W., Pan, J., Fan, B., and Liu, Y. (2019). Removal of gaseous elemental mercury using seaweed chars impregnated by NH4Cl and NH4Br. Journal of Cleaner Production, 216, 277-287.
Yardim, M. F., Budinova, T., Ekinci, E., Petrov, N., Razvigorova, M., and Minkova, V. (2003). Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere, 52(5), 835-841.
Yeh, C. N., Huang, H. Y., Lim, A. T. O., Jhang, R. H., Chen, C. H., and Huang, J. X. (2019). Binder-free graphene oxide doughs. Nature Communications, 10, 422.
Yoon, J., Cao, X. D., Zhou, Q. X., and Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2-3), 456-464.
Yuan, C. S., Lin, H. Y., Wu, C. H., and Liu, M. H. (2004). Preparation of sulfurized powdered activated carbon from waste tires using an innovative compositive impregnation process. Journal of the Air & Waste Management Association, 54(7), 862-870.
Zabaniotou, A. A., and Stavropoulos, G. (2003). Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis, 70(2), 711-722.
Zhang, F. S., Nriagu, J. O., and Itoh, H. (2005). Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research, 39(2), 389-395.
Zhang, S. B., Diaz-Somoano, M., Zhao, Y. C., Yang, J. P., and Zhang, J. Y. (2019). Research on the mechanism of elemental mercury removal over Mn-based SCR catalysts by a developed Hg-TPD method. Energy & Fuels, 33(3), 2467-2476.
Zhang, X., Wang, T., Ma, L., and Chang, J. (2008). Vacuum pyrolysis of waste tires with basic additives. Waste Management, 28(11), 2301-2310.
Zheng, N., Wang, Q., and Zheng, D. (2007). Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao zinc plant in China via consumption of vegetables. Science of the Total Environment, 383(1), 81-89.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74198-
dc.description.abstract由於交通及民生產業蓬勃發展,民眾使用機動車輛的需求逐年攀升,間接導致產生的廢輪胎亦逐年增長。過去廢輪胎多以廢棄物形式堆置於堆置場或以船運方式送至國外,然而近年來科技日新月異,對於廢輪胎之處理技術亦有許多突破,熱裂解技術即為廢輪胎資源化的一大進展。利用熱裂解技術可將廢輪胎裂解為燃油、燃氣與碳黑,其中燃油與燃氣主要應用於作為輔助燃料使用,碳黑則因其高含碳量而被作為瀝青、再製輪胎或紡織產業等去處。由於碳黑本身的高含碳量以及具相對較高之含硫量,再加上其回收廢輪胎資源化之副產物的成本相對低廉,符合對於汞或其他重金屬吸附材料的特性與條件,進而改善環境中汞與重金屬的污染。而氧化石墨烯是石墨烯最重要的衍生物之一,過去被廣泛研究並且改質,可依據表面的強氧官能基和高水溶性以用於吸附劑的功能。因此本研究透過廢輪胎碳黑與改質後的碳黑氧化石墨烯,探討在不同吸附條件下的氣液相汞與液相重金屬去除效率,經由批次實驗獲得參數範圍之最適吸附參數,並經由物化性分析及吸附動力學等交叉分析進行反應機制的探討。
  在物化分析中可得廢輪胎碳黑與碳黑氧化石墨烯其比表面積分別為78.9 m2/g與32.57 m2/g,元素分析中S含量分別為2.32與2.37 wt%,而碳黑氧化石墨烯的O含量為22.17 wt%,顯示其表面具氧官能基,對比於XPS的表面官能基分析結果,碳黑氧化石墨烯確實較碳黑更多含氧官能基,且硫官能基上也從二價硫轉變為四價或六價硫的官能基。在氣相除汞結果可得到兩種材料在吸附時間內之吸附量相近,且稍微優於市售含硫除汞碳。
  而在液相除汞與去除重金屬方面,參數範圍條件下之最適吸附參數分別為對於Cu與Hg在參數範圍內之廢輪胎碳黑最適吸附參數分別為100 g、120分鐘、pH 5以及6 g、1440分鐘;而碳黑氧化石墨烯對於Cu、Zn以及Hg在參數範圍內之最適吸附劑量則分別為40 g、100 g、15 g,吸附時間皆為1分鐘,兩種材料的pH值則都在5時具最佳吸附結果。而在相同條件下比較兩種材料的去除效率時,廢輪胎碳黑對於Hg的吸附高於碳黑氧化石墨烯,在高劑量下廢輪胎碳黑對於Cu的吸附效果較優,而對Zn的吸附則為碳黑氧化石墨烯較佳;比較吸附速率上則以碳黑氧化石墨烯相對優異。而動力吸附模式結果指出,兩種材料在氣相汞實驗結果較為符合擬一階模式與顆粒內部擴散模型。碳黑在對於液相Cu與Hg吸附則較符合擬二階模式。對於程序升溫脫附汞的結果則顯示,廢輪胎碳黑在氣液相吸附上多以HgS與HgSO4形式鍵結,碳黑氧化石墨烯則以HgO與HgSO4為主。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-17T08:23:58Z (GMT). No. of bitstreams: 1
ntu-108-P06541204-1.pdf: 5435550 bytes, checksum: 1f4a70c7d05e3db7eda6c239991ae3ff (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents第一章 前言 1
1.1研究緣起 1
1.2研究目標 2
第二章 文獻回顧 3
2.1汞 4
2.1.1全球汞循環 5
2.1.2無機汞 8
2.1.3有機汞 10
2.1.4氣液相除汞技術 11
2.2重金屬污染危害 12
2.2.1工業中銅、鋅來源與危害 12
2.2.2現有去除重金屬技術 13
2.3活性碳 14
2.3.1活性碳的介紹與製備 14
2.3.2活性碳的種類 14
2.3.3活性碳的吸附原理 16
2.3.4廢輪胎碳黑製備與應用 25
2.4氧化石墨烯 31
2.5廢棄物改質含碳材料進行汞去除 33
第三章 材料與方法 36
3.1研究流程與架構 36
3.2材料製備與合成 37
3.2.1 廢輪胎碳黑 37
3.2.2 廢輪胎碳黑製備氧化石墨烯 38
3.3氣相汞動力吸附實驗 40
3.3.1 汞蒸氣吸附裝置建置 40
3.3.2 廢輪胎碳黑及碳黑氧化石墨烯動力吸附實驗 42
3.4液相動力吸附實驗 44
3.4.1廢輪胎碳黑吸附實驗 44
3.4.2氧化石墨烯與碳黑氧化石墨烯吸附實驗 46
3.5廢輪胎碳黑與碳黑氧化石墨烯物理及化學特性 48
3.5.1 元素分析 48
3.5.2 掃描式電子顯微鏡 49
3.5.3 比表面積與孔徑大小分析 49
3.5.4 X射線光電子質譜 50
3.5.5 界達電位分析 52
3.5.6 感應耦合電漿原子發射光譜儀 52
第四章 結果與討論 53
4.1 廢輪胎碳黑與碳黑氧化石墨烯物化特性分析 53
4.1.1 物理結構及特性 53
4.1.2 表面結構特性 55
4.1.3 比表面積與平均孔徑差異比較 56
4.1.4 表面官能基分析 57
4.1.5 界達電位分析 60
4.2 氣相汞吸附比較探討 61
4.3 液相重金屬吸附比較探討 64
4.3.1 劑量材料吸附效率影響 64
4.3.2 時間對於材料吸附動力平衡影響 69
4.3.3 pH對於材料吸附效率影響 71
4.3.4 材料的等溫吸附情形 74
4.3.5 程序升溫脫附汞之鍵結分析 75
第五章 結論與建議 78
5.1結論 78
5.2建議 79
文獻來源 i
dc.language.isozh-TW
dc.title利用回收廢輪胎碳黑並改質以應用於重金屬去除zh_TW
dc.titleRecycling and modification of waste tire carbon black for heavy metal removalen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張添晉,余炳盛,林逸彬
dc.subject.keyword廢輪胎,碳黑,氧化石墨烯,汞,活性碳,吸附,zh_TW
dc.subject.keywordwaste tire,carbon black,graphene oxide,mercury,activated carbon,adsorption,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201903446
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
5.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved