Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74191
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁啟惠(Chi-Huey Wong)
dc.contributor.authorRuey-Herng Leeen
dc.contributor.author李瑞恆zh_TW
dc.date.accessioned2021-06-17T08:23:40Z-
dc.date.available2020-08-19
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation1. Varki A & Sharon N (2009) Historical background and overview. Essentials of Glycobiology. 2nd edition, (Cold Spring Harbor Laboratory Press).
2. Hokke CH & van Diepen A (2017) Helminth glycomics–glycan repertoires and host-parasite interactions. Molecular and biochemical parasitology 215:47-57.
3. Martens EC, Chiang HC, & Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell host & microbe 4(5):447-457.
4. Kopitz J (2017) Lipid glycosylation: a primer for histochemists and cell biologists. Histochemistry and cell biology 147(2):175-198.
5. Stanley P, Taniguchi N, & Aebi M (2017) N-glycans. Essentials of Glycobiology [Internet]. 3rd edition, (Cold Spring Harbor Laboratory Press).
6. Jennewein MF & Alter G (2017) The immunoregulatory roles of antibody glycosylation. Trends in immunology 38(5):358-372.
7. Sakae Y, Satoh T, Yagi H, Yanaka S, Yamaguchi T, Isoda Y, Iida S, Okamoto Y, & Kato K (2017) Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa. Scientific Reports 7(1):13780.
8. Wuhrer M, Selman MH, McDonnell LA, Kümpfel T, Derfuss T, Khademi M, Olsson T, Hohlfeld R, Meinl E, & Krumbholz M (2015) Pro-inflammatory pattern of IgG1 Fc glycosylation in multiple sclerosis cerebrospinal fluid. Journal of neuroinflammation 12(1):235.
9. Kiyoshi M, Caaveiro JM, Tada M, Tamura H, Tanaka T, Terao Y, Morante K, Harazono A, Hashii N, & Shibata H (2018) Assessing the heterogeneity of the Fc-Glycan of a therapeutic antibody using an engineered FcγReceptor IIIa-Immobilized column. Scientific reports 8(1):3955.
10. Pagan JD, Kitaoka M, & Anthony RM (2018) Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 172(3):564-577. e513.
11. Bas M, Terrier A, Jacque E, Dehenne A, Pochet-Béghin V, Beghin C, Dezetter A-S, Dupont G, Engrand A, & Beaufils B (2019) Fc sialylation prolongs serum half-life of therapeutic antibodies. The Journal of Immunology 202(5):1582-1594.
12. Kaneko Y, Nimmerjahn F, & Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. science 313(5787):670-673.
13. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, & Ravetch JV (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320(5874):373-376.
14. Scallon BJ, Tam SH, McCarthy SG, Cai AN, & Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Molecular immunology 44(7):1524-1534.
15. Lin C-W, Tsai M-H, Li S-T, Tsai T-I, Chu K-C, Liu Y-C, Lai M-Y, Wu C-Y, Tseng Y-C, & Shivatare SS (2015) A common glycan structure on immunoglobulin G for enhancement of effector functions. Proceedings of the National Academy of Sciences 112(34):10611-10616.
16. Schnaar RL, Suzuki A, & Stanley P (2009) Glycosphingolipids. Essentials of Glycobiology. 2nd edition, (Cold Spring Harbor Laboratory Press).
17. Merrill Jr AH (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chemical reviews 111(10):6387-6422.
18. Aureli M, Loberto N, Chigorno V, Prinetti A, & Sonnino S (2011) Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochemical research 36(9):1636-1644.
19. Kitatani K, Idkowiak-Baldys J, & Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular signalling 20(6):1010-1018.
20. D'Angelo G, Capasso S, Sticco L, & Russo D (2013) Glycosphingolipids: synthesis and functions. The FEBS journal 280(24):6338-6353.
21. Giraudo CG, Daniotti JL, & Maccioni HJ (2001) Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proceedings of the National Academy of Sciences 98(4):1625-1630.
22. Maccioni HJ, Quiroga R, & Ferrari ML (2011) Cellular and molecular biology of glycosphingolipid glycosylation. Journal of neurochemistry 117(4):589-602.
23. D’Angelo G, Uemura T, Chuang C-C, Polishchuk E, Santoro M, Ohvo-Rekilä H, Sato T, Di Tullio G, Varriale A, & D’Auria S (2013) Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 501(7465):116.
24. Snijder B, Sacher R, Rämö P, Damm E-M, Liberali P, & Pelkmans L (2009) Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461(7263):520.
25. Kojima N & Hakomori S-i (1991) Synergistic effect of two cell recognition systems: glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein. Glycobiology 1(6):623-630.
26. Huang X, Schurman N, Handa K, & Hakomori S (2017) Functional role of glycosphingolipids in contact inhibition of growth in a human mammary epithelial cell line. FEBS letters 591(13):1918-1928.
27. Iwabuchi K, Nakayama H, Oizumi A, Suga Y, Ogawa H, & Takamori K (2015) Role of ceramide from glycosphingolipids and its metabolites in immunological and inflammatory responses in humans. Mediators of inflammation 2015.
28. Nakayama H, Yoshizaki F, Prinetti A, Sonnino S, Mauri L, Takamori K, Ogawa H, & Iwabuchi K (2008) Lyn‐coupled LacCer‐enriched lipid rafts are required for CD11b/CD18‐mediated neutrophil phagocytosis of nonopsonized microorganisms. Journal of leukocyte biology 83(3):728-741.
29. Karlsson K-A (1986) Animal glycolipids as attachment sites for microbes. Chemistry and physics of lipids 42(1-3):153-172.
30. Kakio A, Nishimoto S-i, Yanagisawa K, Kozutsumi Y, & Matsuzaki K (2002) Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41(23):7385-7390.
31. Ikeda K, Yamaguchi T, Fukunaga S, Hoshino M, & Matsuzaki K (2011) Mechanism of amyloid β-protein aggregation mediated by GM1 ganglioside clusters. Biochemistry 50(29):6433-6440.
32. Yagi-Utsumi M, Matsuo K, Yanagisawa K, Gekko K, & Kato K (2011) Spectroscopic characterization of intermolecular interaction of amyloid β promoted on GM1 micelles. International Journal of Alzheimer’s Disease 2011.
33. Wu G, Lu ZH, Kulkarni N, & Ledeen RW (2012) Deficiency of ganglioside GM1 correlates with Parkinson's disease in mice and humans. Journal of neuroscience research 90(10):1997-2008.
34. Gizaw ST, Koda T, Amano M, Kamimura K, Ohashi T, Hinou H, & Nishimura S-I (2015) A comprehensive glycome profiling of Huntington's disease transgenic mice. Biochimica et Biophysica Acta (BBA)-General Subjects 1850(9):1704-1718.
35. Suzuki M & Cheung N-KV (2015) Disialoganglioside GD2 as a therapeutic target for human diseases. Expert opinion on therapeutic targets 19(3):349-362.
36. Liu J, Zheng X, Pang X, Li L, Wang J, Yang C, & Du G (2018) Ganglioside GD3 synthase (GD3S), a novel cancer drug target. Acta Pharmaceutica Sinica B.
37. Chang WW, Lee CH, Lee P, Lin J, Hsu CW, Hung JT, Lin JJ, Yu JC, Shao LE, Yu J, Wong CH, & Yu AL (2008) Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A 105(33):11667-11672.
38. Rahman MS, Spitzhorn LS, Wruck W, Hagenbeck C, Balan P, Graffmann N, Bohndorf M, Ncube A, Guillot PV, Fehm T, & Adjaye J (2018) The presence of human mesenchymal stem cells of renal origin in amniotic fluid increases with gestational time. Stem Cell Res Ther 9(1):113.
39. Harichandan A, Sivasubramaniyan K, Hennenlotter J, Schwentner C, Stenzl A, & Buhring HJ (2013) Isolation of adult human spermatogonial progenitors using novel markers. J Mol Cell Biol 5(5):351-353.
40. Virant-Klun I, Skutella T, Hren M, Gruden K, Cvjeticanin B, Vogler A, & Sinkovec J (2013) Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. Biomed Res Int 2013:690415.
41. Huang YL, Hung JT, Cheung SK, Lee HY, Chu KC, Li ST, Lin YC, Ren CT, Cheng TJ, Hsu TL, Yu AL, Wu CY, & Wong CH (2013) Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci U S A 110(7):2517-2522.
42. Gottschling S, Jensen K, Warth A, Herth FJ, Thomas M, Schnabel PA, & Herpel E (2013) Stage-specific embryonic antigen-4 is expressed in basaloid lung cancer and associated with poor prognosis. Eur Respir J 41(3):656-663.
43. Zhang W, Ding ML, Zhang JN, Qiu JR, Shen YH, Ding XY, Deng LF, Zhang WB, & Zhu J (2015) mTORC1 maintains the tumorigenicity of SSEA-4(+) high-grade osteosarcoma. Sci Rep 5:9604.
44. Nakamura Y, Miyata Y, Matsuo T, Shida Y, Hakariya T, Ohba K, Taima T, Ito A, Suda T, Hakomori SI, Saito S, & Sakai H (2019) Stage-specific embryonic antigen-4 is a histological marker reflecting the malignant behavior of prostate cancer. Glycoconj J.
45. Virant-Klun I, Kenda-Suster N, & Smrkolj S (2016) Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res 9:12.
46. Noto Z, Yoshida T, Okabe M, Koike C, Fathy M, Tsuno H, Tomihara K, Arai N, Noguchi M, & Nikaido T (2013) CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncol 49(8):787-795.
47. Sivasubramaniyan K, Harichandan A, Schilbach K, Mack AF, Bedke J, Stenzl A, Kanz L, Niederfellner G, & Buhring HJ (2015) Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology 25(8):902-917.
48. Aloia A, Petrova E, Tomiuk S, Bissels U, Deas O, Saini M, Zickgraf FM, Wagner S, Spaich S, Sutterlin M, Schneeweiss A, Reitberger M, Ruberg S, Gerstmayer B, Agorku D, Knobel S, Terranegra A, Falleni M, Soldati L, Sprick MR, Trumpp A, Judde JG, Bosio A, Cairo S, & Hardt O (2015) The sialyl-glycolipid stage-specific embryonic antigen 4 marks a subpopulation of chemotherapy-resistant breast cancer cells with mesenchymal features. Breast Cancer Res 17(1):146.
49. Zhang S, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, Lloyd KO, & Livingston PO (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer 73(1):42-49.
50. Wang CC, Huang YL, Ren CT, Lin CW, Hung JT, Yu JC, Yu AL, Wu CY, & Wong CH (2008) Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc Natl Acad Sci U S A 105(33):11661-11666.
51. Lou YW, Wang PY, Yeh SC, Chuang PK, Li ST, Wu CY, Khoo KH, Hsiao M, Hsu TL, & Wong CH (2014) Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. PNAS 111(7):2482-2487.
52. Cheung SK, Chuang PK, Huang HW, Hwang-Verslues WW, Cho CH, Yang WB, Shen CN, Hsiao M, Hsu TL, Chang CF, & Wong CH (2016) Stage-specific embryonic antigen-3 (SSEA-3) and beta3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proc Natl Acad Sci U S A 113(4):960-965.
53. Chuang PK, Hsiao M, Hsu TL, Chang CF, Wu CY, Chen BR, Huang HW, Liao KS, Chen CC, Chen CL, Yang SM, Kuo CW, Chen P, Chiu PT, Chen IJ, Lai JS, Yu CT, & Wong CH (2019) Signaling pathway of globo-series glycosphingolipids and beta1,3-galactosyltransferase V (beta3GalT5) in breast cancer. Proc Natl Acad Sci U S A 116(9):3518-3523.
54. Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Demoulins T, Schneider C, Wehrli M, Hunger RE, Baerlocher GM, Simon HU, Romero P, Munz C, & von Gunten S (2014) Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest 124(4):1810-1820.
55. Kent SP, Ryan KH, & Siegel AL (1978) Steric hindrance as a factor in the reaction of labeled antibody with cell surface antigenic determinants. J Histochem Cytochem 26(8):618-621.
56. De Vita M, Catzola V, Buzzonetti A, Fossati M, Battaglia A, Zamai L, & Fattorossi A (2015) Unexpected interference in cell surface staining by monoclonal antibodies to unrelated antigens. Cytometry B Clin Cytom 88(5):352-354.
57. Lu LL, Suscovich TJ, Fortune SM, & Alter G (2018) Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 18(1):46-61.
58. Bryceson YT, March ME, Ljunggren HG, & Long EO (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107(1):159-166.
59. Bhatnagar N, Ahmad F, Hong HS, Eberhard J, Lu IN, Ballmaier M, Schmidt RE, Jacobs R, & Meyer-Olson D (2014) FcgammaRIII (CD16)-mediated ADCC by NK cells is regulated by monocytes and FcgammaRII (CD32). Eur J Immunol 44(11):3368-3379.
60. Iannello A & Ahmad A (2005) Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 24(4):487-499.
61. Marks RM, Czerniecki M, & Penny R (1986) Killing of human dermal capillary endothelial cells by antibody-dependent cellular cytotoxicity. J Invest Dermatol 87(4):519-523.
62. Shah DD, Zhang J, Hsieh MC, Sundaram S, Maity H, & Mallela KMG (2018) Effect of Peroxide- Versus Alkoxyl-Induced Chemical Oxidation on the Structure, Stability, Aggregation, and Function of a Therapeutic Monoclonal Antibody. J Pharm Sci 107(11):2789-2803.
63. Shah DD, Zhang J, Maity H, & Mallela KMG (2018) Effect of photo-degradation on the structure, stability, aggregation, and function of an IgG1 monoclonal antibody. Int J Pharm 547(1-2):438-449.
64. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Haber DA, & Maheswaran S (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110-1122.
65. Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Dieras V, Mathiot C, Mignot L, Thiery JP, Sastre-Garau X, & Pierga JY (2008) Prognosis of women with stage IV breast cancer depends on detection of circulating tumor cells rather than disseminated tumor cells. Ann Oncol 19(3):496-500.
66. Riethdorf S, Muller V, Zhang L, Rau T, Loibl S, Komor M, Roller M, Huober J, Fehm T, Schrader I, Hilfrich J, Holms F, Tesch H, Eidtmann H, Untch M, von Minckwitz G, & Pantel K (2010) Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res 16(9):2634-2645.
67. Wang G, Benasutti H, Jones JF, Shi G, Benchimol M, Pingle S, Kesari S, Yeh Y, Hsieh LE, Liu YT, Elias A, & Simberg D (2018) Isolation of Breast cancer CTCs with multitargeted buoyant immunomicrobubbles. Colloids Surf B Biointerfaces 161:200-209.
68. Loeian MS, Mehdi Aghaei S, Farhadi F, Rai V, Yang HW, Johnson MD, Aqil F, Mandadi M, Rai SN, & Panchapakesan B (2019) Liquid biopsy using the nanotube-CTC-chip: capture of invasive CTCs with high purity using preferential adherence in breast cancer patients. Lab Chip 19(11):1899-1915.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74191-
dc.description.abstract先前研究指出globo-系列鞘醣脂 (SSEA3, SSEA4, Globo H) 大量表現在許多癌症,且它們涉及與癌症生長和轉移相關的訊息傳遞路徑。SSEA4和Globo H皆為SSEA3的下游產物,已被指出可能會與不同的蛋白作用來作訊息傳遞,造成乳癌增生。因此,使用SSEA4抗體和Globo H抗體作聯合治療,可能會是更有效的治療方式。另外,在老鼠實驗中,此聯合治療已證實對於抑制腫瘤生長能產生協同作用。為了更了解此協同作用,我們進行體外實驗,探討SSEA4抗體和Globo H抗體在抗原結合和抗體依賴的細胞介導的細胞毒性作用上之結合效果。在本研究中,我們發現MC813-70 (SSEA4抗體) 會影響VK9 (Globo H抗體) 結合抗原。此外,此組合所誘導的抗體依賴的細胞介導的細胞毒性作用與只有SSEA4抗體誘導的作用程度相似,顯示SSEA4在乳癌是個主要的標靶。此研究中,我們建立了染色訊號與抗體依賴的細胞介導的細胞毒性作用的關聯性。此結果能作為伴隨式診斷的一個平台,根據病人的抗原表現量預測聯合治療的效果,另外也可應用在藥物研發,評估其他不同抗體或抗體策略。zh_TW
dc.description.abstractPrevious studies have shown that the globo-series glycosphingolipids (SSEA3, SSEA4, and Globo H) are expressed in many cancers and involved in the signaling pathways that promote cancer proliferation and metastasis. SSEA4 and Globo H, the downstream products of SSEA3, were shown to interact with different proteins in the signaling pathway in breast cancer proliferation, providing a direction for combination therapy using anti-SSEA4 and anti-Globo H antibodies. Moreover, the combination was shown to induce better tumor suppression in mice inoculated with breast cancer cell lines. To further understand the effect in vivo, we focused on the combined effect of the two antibodies in antigen binding and antibody dependent cellular cytotoxicity (ADCC) induction in vitro. Here, we report that the antigen binding of VK9 (anti-Globo H antibody) was influenced by MC813-70 (anti-SSEA4 antibody). In addition, we have also found that combination of both antibodies induced similar effector cell activation as did anti-SSEA4 antibodies alone in reporter-based ADCC assay, indicating that SSEA4 is perhaps a major target in breast cancer due to its high expression. Furthermore, we have established the correlation between staining signal and ADCC response. These findings can serve as a platform in future companion studies to predict therapy outcome based on patients’ expression levels as well as to evaluate other antibodies or antibody strategies for drug development.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:23:40Z (GMT). No. of bitstreams: 1
ntu-108-R06223207-1.pdf: 1856922 bytes, checksum: 6eb35cc0f348a85507934a954c00d7ab (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………....i
誌謝………………..………………………………………………………………..ii
摘要………………………………………………………………………………..iii
Abstract…………………………………………………………………………….iv
Table of Contents…………………………………………………………………..vi
List of Figures……………………………………………………………………viii
List of Tables………………………………………………………………………ix
Abbreviations…………………………………………………………………….....x
Chapter 1 Introduction…………………………………………………….....1
1.1 Glycans…………………………………………………………………....1
1.1.1 Protein glycosylation process………………………………2
1.1.2 Impact of antibody glycosylation on effector functions……3
1.2 Glycosphingolipid………………………………………………………...4
1.2.1 GSL synthesis and turnover………………………………...5
1.2.2 Control of GSL expression…………………………………6
1.2.3 GSL functions and related diseases………………………...7
1.3 Globo-series GSL…………………………………………………………8
1.4 Rationale and significance……………………………………………….10
Chapter 2 Materials and Methods………………………………………..12
2.1 Cell culture………………………………………………………………12
2.2 Production of chimeric VK9 antibodies………………………………....12
2.3 Antibody glycoform analysis by in-solution tryptic digestion……….….14
2.4 Surface staining in flow cytometry………………………………………14
2.5 ADCC reporter bioassay…………………………………………………16
Chapter 3 Results……………………………………………………………..18
3.1 Surface staining of globo-series GSLs…………………………………..18
3.2 ChAb6 induced higher ADCC response than chVK9…………………...19
3.3 ChVK9 induced little ADCC response……………….………………….21
3.4 Positive correlation between surface expression and ADCC……………21
Chapter 4 Discussion………………………………………………………...23
Chapter 5 Figures…………………………………………………………….27
Chapter 6 Tables……………………………………………………………...36
Chapter 7 References………………………………………………………..37
Appendices…………………………………………………………………..…50
dc.language.isoen
dc.titleSSEA4抗體和Globo H抗體在乳癌的結合效果zh_TW
dc.titleCombined effect of anti-SSEA4 and anti-Globo H antibodies in breast canceren
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐翠玲(Tsui-Ling Hsu),吳漢忠(Han-Chung Wu),蕭宏昇(Michael Hsiao)
dc.subject.keywordSSEA4,Globo H,抗體依賴的細胞介導的細胞毒性作用,zh_TW
dc.subject.keywordSSEA4,Globo H,ADCC,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201903337
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
1.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved