Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74183
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇
dc.contributor.authorChia-Shan Hsiehen
dc.contributor.author謝嘉珊zh_TW
dc.date.accessioned2021-06-17T08:23:20Z-
dc.date.available2019-08-16
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation1. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921.
2. Venter, J.C., et al., The sequence of the human genome. Science, 2001. 291(5507): p. 1304-51.
3. Bell, C.J., et al., Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med, 2011. 3(65): p. 65ra4.
4. Lam, K., et al., Identification of variants in CNGA3 as cause for achromatopsia by exome sequencing of a single patient. Arch Ophthalmol, 2011. 129(9): p. 1212-7.
5. Choi, M., et al., Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A, 2009. 106(45): p. 19096-101.
6. Worthey, E.A., et al., Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med, 2011. 13(3): p. 255-62.
7. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009. 10(1): p. 57-63.
8. Manolio, T.A., et al., Finding the missing heritability of complex diseases. Nature, 2009. 461(7265): p. 747-53.
9. Schork, N.J., et al., Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev, 2009. 19(3): p. 212-9.
10. Singleton, A.B., et al., Towards a complete resolution of the genetic architecture of disease. Trends Genet, 2010. 26(10): p. 438-42.
11. Frazer, K.A., et al., Human genetic variation and its contribution to complex traits. Nat Rev Genet, 2009. 10(4): p. 241-51.
12. Brugada, R., et al., Identification of a genetic locus for familial atrial fibrillation. N Engl J Med, 1997. 336(13): p. 905-11.
13. Chen, Y.H., et al., KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 2003. 299(5604): p. 251-4.
14. Yang, Y., et al., Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet, 2004. 75(5): p. 899-905.
15. Hong, K., et al., Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol, 2005. 16(4): p. 394-6.
16. Xia, M., et al., A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun, 2005. 332(4): p. 1012-9.
17. Ellinor, P.T., et al., Mutations in the long QT gene, KCNQ1, are an uncommon cause of atrial fibrillation. Heart, 2004. 90(12): p. 1487-8.
18. Ellinor, P.T., et al., Potassium channel gene mutations rarely cause atrial fibrillation. BMC Med Genet, 2006. 7: p. 70.
19. Ng, S.B., et al., Exome sequencing identifies the cause of a mendelian disorder. Nat Genet, 2010. 42(1): p. 30-5.
20. Nattel, S., B. Burstein, and D. Dobrev, Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol, 2008. 1(1): p. 62-73.
21. Lai, L.P., et al., Functional genomic study on atrial fibrillation using cDNA microarray and two-dimensional protein electrophoresis techniques and identification of the myosin regulatory light chain isoform reprogramming in atrial fibrillation. J Cardiovasc Electrophysiol, 2004. 15(2): p. 214-23.
22. Park, P.J., ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 2009. 10(10): p. 669-80.
23. Tsai, C.T., et al., Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation, 2008. 117(3): p. 344-55.
24. Petrosino, J.F., et al., Metagenomic pyrosequencing and microbial identification. Clin Chem, 2009. 55(5): p. 856-66.
25. Benjamin, E.J., et al., Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet, 2009. 41(8): p. 879-81.
26. Ellinor, P.T., et al., Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet, 2010. 42(3): p. 240-4.
27. Gudbjartsson, D.F., et al., Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature, 2007. 448(7151): p. 353-7.
28. Stranger, B.E., et al., Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 2007. 315(5813): p. 848-53.
29. Conrad, D.F., et al., Origins and functional impact of copy number variation in the human genome. Nature, 2010. 464(7289): p. 704-12.
30. Sebat, J., et al., Strong association of de novo copy number mutations with autism. Science, 2007. 316(5823): p. 445-9.
31. Walsh, T., et al., Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 2008. 320(5875): p. 539-43.
32. Lanktree, M. and R.A. Hegele, Copy number variation in metabolic phenotypes. Cytogenet Genome Res, 2008. 123(1-4): p. 169-75.
33. Arking, D.E., et al., A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet, 2006. 38(6): p. 644-51.
34. Samani, N.J., et al., Genomewide association analysis of coronary artery disease. N Engl J Med, 2007. 357(5): p. 443-53.
35. Beaudoin, M., et al., Pooled DNA resequencing of 68 myocardial infarction candidate genes in French canadians. Circ Cardiovasc Genet, 2012. 5(5): p. 547-54.
36. Link, E., et al., SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med, 2008. 359(8): p. 789-99.
37. Tsai, C.T., et al., Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation, 2004. 109(13): p. 1640-6.
38. Tsai, C.T., et al., Renin-angiotensin system gene polymorphisms and atrial fibrillation: a regression approach for the detection of gene-gene interactions in a large hospitalized population. Cardiology, 2008. 111(1): p. 1-7.
39. Chang, S.H., et al., Significant association of rs13376333 in KCNN3 on chromosome 1q21 with atrial fibrillation in a Taiwanese population. Circ J, 2012. 76(1): p. 184-8.
40. Chang, S.N., et al., A functional variant in the promoter region regulates the C-reactive protein gene and is a potential candidate for increased risk of atrial fibrillation. J Intern Med, 2012. 272(3): p. 305-15.
41. Lu, T.P., et al., Integrated analyses of copy number variations and gene expression in lung adenocarcinoma. PLoS One, 2011. 6(9): p. e24829.
42. Westerfield, M., The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). 4th ed ed. 2000: Univ. of Oregon Press, Eugene.
43. Arnaout, R., et al., Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A, 2007. 104(27): p. 11316-21.
44. Tsai, C.T., et al., Mechanical stretch of atrial myocyte monolayer decreases sarcoplasmic reticulum calcium adenosine triphosphatase expression and increases susceptibility to repolarization alternans. J Am Coll Cardiol, 2011. 58(20): p. 2106-15.
45. Tsai, C.T., et al., Increased expression of mineralocorticoid receptor in human atrial fibrillation and a cellular model of atrial fibrillation. J Am Coll Cardiol, 2010. 55(8): p. 758-70.
46. Tsai, C.T., et al., Renin-angiotensin system component expression in the HL-1 atrial cell line and in a pig model of atrial fibrillation. J Hypertens, 2008. 26(3): p. 570-82.
47. Tsai, C.T., et al., Angiotensin II increases expression of alpha1C subunit of L-type calcium channel through a reactive oxygen species and cAMP response element-binding protein-dependent pathway in HL-1 myocytes. Circ Res, 2007. 100(10): p. 1476-85.
48. Lai, L.P., et al., Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca(2+)-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol, 1999. 33(5): p. 1231-7.
49. Wu, C.K., et al., Connective tissue growth factor and cardiac diastolic dysfunction: human data from the Taiwan Diastolic Heart Failure Registry and molecular basis by cellular and animal models. Eur J Heart Fail, 2014. 16(2): p. 163-72.
50. Lee, H.S., et al., Genome-wide copy number variation study reveals KCNIP1 as a modulator of insulin secretion. Genomics, 2014. 104(2): p. 113-20.
51. McCarroll, S.A., et al., Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet, 2008. 40(10): p. 1166-74.
52. An, W.F., et al., Modulation of A-type potassium channels by a family of calcium sensors. Nature, 2000. 403(6769): p. 553-6.
53. Pruunsild, P. and T. Timmusk, Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics, 2005. 86(5): p. 581-93.
54. Bourdeau, M.L., et al., KChIP1 modulation of Kv4.3-mediated A-type K(+) currents and repetitive firing in hippocampal interneurons. Neuroscience, 2011. 176: p. 173-87.
55. Franz, M.R., et al., Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter. J Am Coll Cardiol, 1997. 30(7): p. 1785-92.
56. Tieleman, R.G., et al., Verapamil reduces tachycardia-induced electrical remodeling of the atria. Circulation, 1997. 95(7): p. 1945-53.
57. Workman, A.J., et al., Transient outward K+ current reduction prolongs action potentials and promotes afterdepolarisations: a dynamic-clamp study in human and rabbit cardiac atrial myocytes. J Physiol, 2012. 590(17): p. 4289-305.
58. Thomsen, M.B., et al., Transcriptional and electrophysiological consequences of KChIP2-mediated regulation of CaV1.2. Channels (Austin), 2009. 3(5): p. 308-10.
59. Roden, D.M. and T. Yang, Protecting the heart against arrhythmias: potassium current physiology and repolarization reserve. Circulation, 2005. 112(10): p. 1376-8.
60. Muller, II, et al., Functional modeling in zebrafish demonstrates that the atrial-fibrillation-associated gene GREM2 regulates cardiac laterality, cardiomyocyte differentiation and atrial rhythm. Dis Model Mech, 2013. 6(2): p. 332-41.
61. Liang, B., et al., Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. J Mol Cell Cardiol, 2014. 67: p. 69-76.
62. Sinner, M.F., et al., Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation, 2014. 130(15): p. 1225-35.
63. Rottbauer, W., et al., Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. Dev Cell, 2001. 1(2): p. 265-75.
64. Kakar, P., C.J. Boos, and G.Y. Lip, Management of atrial fibrillation. Vasc Health Risk Manag, 2007. 3(1): p. 109-16.
65. Crandall, M.A., et al., Atrial fibrillation and CHADS2 risk factors are associated with highly sensitive C-reactive protein incrementally and independently. Pacing Clin Electrophysiol, 2009. 32(5): p. 648-52.
66. Abraham, J.M., et al., Does CHA2DS2-VASc improve stroke risk stratification in postmenopausal women with atrial fibrillation? Am J Med, 2013. 126(12): p. 1143.e1-8.
67. Chang, S.N., et al., C-reactive protein gene polymorphism predicts the risk of thromboembolic stroke in patients with atrial fibrillation: a more than 10-year prospective follow-up study. J Thromb Haemost, 2017. 15(8): p. 1541-1546.
68. Tsai, C.T., et al., Renin-angiotensin system gene polymorphisms predict the risk of stroke in patients with atrial fibrillation: a 10-year prospective follow-up study. Heart Rhythm, 2014. 11(8): p. 1384-90.
69. Chen, C.H., et al., Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet, 2016. 25(24): p. 5321-5331.
70. Wu, C.K., et al., The Taiwan Heart Registries: Its Influence on Cardiovascular Patient Care. J Am Coll Cardiol, 2018. 71(11): p. 1273-1283.
71. Lahiri, D.K. and J.I. Nurnberger, Jr., A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res, 1991. 19(19): p. 5444.
72. Shia, W.C., et al., Genetic copy number variants in myocardial infarction patients with hyperlipidemia. BMC Genomics, 2011. 12 Suppl 3: p. S23.
73. Kramer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 2014. 30(4): p. 523-30.
74. Tsvetanova, N.G., R. Irannejad, and M. von Zastrow, G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. J Biol Chem, 2015. 290(11): p. 6689-96.
75. Tsao, H.M., et al., Functional Remodeling of Both Atria is Associated with Occurrence of Stroke in Patients with Paroxysmal and Persistent Atrial Fibrillation. Acta Cardiol Sin, 2017. 33(1): p. 50-57.
76. Vatan, M.B., et al., Relationship between CHA2DS2-VASc score and atrial electromechanical function in patients with paroxysmal atrial fibrillation: A pilot study. J Cardiol, 2015. 66(5): p. 382-7.
77. Sun, H., et al., Cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation, 1998. 98(7): p. 719-27.
78. Yue, L., et al., Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res, 1997. 81(4): p. 512-25.
79. Christ, T., et al., L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation, 2004. 110(17): p. 2651-7.
80. Greiser, M., et al., Pharmacological evidence for altered src kinase regulation of I (Ca,L) in patients with chronic atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol, 2007. 375(6): p. 383-92.
81. Christ, T., et al., Arrhythmias, elicited by catecholamines and serotonin, vanish in human chronic atrial fibrillation. Proc Natl Acad Sci U S A, 2014. 111(30): p. 11193-8.
82. Kuldeep, C.M., et al., Terminal 4q deletion syndrome. Indian J Dermatol, 2012. 57(3): p. 222-4.
83. Strehle, E.M., et al., Genotype-phenotype analysis of 4q deletion syndrome: proposal of a critical region. Am J Med Genet A, 2012. 158a(9): p. 2139-51.
84. Xu, W., et al., Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3. Am J Med Genet A, 2012. 158a(3): p. 635-40.
85. Peddibhotla, S., et al., Delineation of candidate genes responsible for structural brain abnormalities in patients with terminal deletions of chromosome 6q27. Eur J Hum Genet, 2015. 23(1): p. 54-60.
86. Su, P.H., et al., Terminal deletion of chromosome 6q. Pediatr Neonatol, 2008. 49(3): p. 88-93.
87. Tsai, C.T., et al., Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation. Nat Commun, 2016. 7: p. 10190.
88. Fox, C.S., et al., Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. Jama, 2004. 291(23): p. 2851-5.
89. Lee, K.T., et al., Association of RS2200733 but not RS10033464 on 4q25 with atrial fibrillation based on the recessive model in a Taiwanese population. Cardiology, 2010. 116(3): p. 151-6.
90. Kirchhof, P., et al., PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet, 2011. 4(2): p. 123-33.
91. Manolio, T.A., L.D. Brooks, and F.S. Collins, A HapMap harvest of insights into the genetics of common disease. J Clin Invest, 2008. 118(5): p. 1590-605.
92. Verlaan, D.J., et al., Targeted screening of cis-regulatory variation in human haplotypes. Genome Res, 2009. 19(1): p. 118-27.
93. Ng, S.B., et al., Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 2009. 461(7261): p. 272-6.
94. Cirulli, E.T. and D.B. Goldstein, Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet, 2010. 11(6): p. 415-25.
95. Hsieh, C.S., et al., Next-Generation Sequencing in the Genetics of Human Atrial Fibrillation. Acta Cardiol Sin, 2013. 29(4): p. 317-22.
96. Kathiresan, S., et al., Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet, 2009. 41(1): p. 56-65.
97. Lusis, A.J. and P. Pajukanta, A treasure trove for lipoprotein biology. Nat Genet, 2008. 40(2): p. 129-30.
98. Tsai, C.T., et al., Angiotensinogen gene haplotype and hypertension: interaction with ACE gene I allele. Hypertension, 2003. 41(1): p. 9-15.
99. Chiang, F.T., et al., Molecular variant M235T of the angiotensinogen gene is associated with essential hypertension in Taiwanese. J Hypertens, 1997. 15(6): p. 607-11.
100. Thurman, R.E., et al., The accessible chromatin landscape of the human genome. Nature, 2012. 489(7414): p. 75-82.
101. Mercer, T.R., et al., DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements. Nat Genet, 2013. 45(8): p. 852-9.
102. Tsai, C.T., et al., Tachycardia of atrial myocytes induces collagen expression in atrial fibroblasts through transforming growth factor beta1. Cardiovasc Res, 2011. 89(4): p. 805-15.
103. Tsai, F.J., et al., A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet, 2010. 6(2): p. e1000847.
104. Romeo, S., et al., Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet, 2007. 39(4): p. 513-6.
105. Wang, J., M.R. Ban, and R.A. Hegele, Multiplex ligation-dependent probe amplification of LDLR enhances molecular diagnosis of familial hypercholesterolemia. J Lipid Res, 2005. 46(2): p. 366-72.
106. Norton, N., et al., Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am J Hum Genet, 2011. 88(3): p. 273-82.
107. Christophersen, I.E., et al., Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. Eur Heart J, 2013. 34(20): p. 1517-25.
108. Olesen, M.S., et al., High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation. Circ Cardiovasc Genet, 2012. 5(4): p. 450-9.
109. Olesen, M.S., et al., Mutations in sodium channel beta-subunit SCN3B are associated with early-onset lone atrial fibrillation. Cardiovasc Res, 2011. 89(4): p. 786-93.
110. Olesen, M.S., et al., A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res, 2013. 98(3): p. 488-95.
111. Oyen, N., et al., Familial aggregation of lone atrial fibrillation in young persons. J Am Coll Cardiol, 2012. 60(10): p. 917-21.
112. Gore-Panter, S.R., et al., Atrial Fibrillation associated chromosome 4q25 variants are not associated with PITX2c expression in human adult left atrial appendages. PLoS One, 2014. 9(1): p. e86245.
113. Wang, J., et al., Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci U S A, 2010. 107(21): p. 9753-8.
114. Yang, P., et al., Polymorphisms in the cardiac sodium channel promoter displaying variant in vitro expression activity. Eur J Hum Genet, 2008. 16(3): p. 350-7.
115. Oklu, R., et al., Pathogenesis of varicose veins. J Vasc Interv Radiol, 2012. 23(1): p. 33-9; quiz 40.
116. Li, X., et al., Aberrantly expressed lncRNAs in primary varicose great saphenous veins. PLoS One, 2014. 9(1): p. e86156.
117. Meissner, M.H., et al., Primary chronic venous disorders. J Vasc Surg, 2007. 46 Suppl S: p. 54s-67s.
118. Heit, J.A., et al., Trends in the incidence of venous stasis syndrome and venous ulcer: a 25-year population-based study. J Vasc Surg, 2001. 33(5): p. 1022-7.
119. Brand, F.N., et al., The epidemiology of varicose veins: the Framingham Study. Am J Prev Med, 1988. 4(2): p. 96-101.
120. Bergan, J.J., et al., Chronic venous disease. N Engl J Med, 2006. 355(5): p. 488-98.
121. Beebe-Dimmer, J.L., et al., The epidemiology of chronic venous insufficiency and varicose veins. Ann Epidemiol, 2005. 15(3): p. 175-84.
122. Krysa, J., G.T. Jones, and A.M. van Rij, Evidence for a genetic role in varicose veins and chronic venous insufficiency. Phlebology, 2012. 27(7): p. 329-35.
123. Naik, B., et al., Clinico-histopathological study of varicose vein and role of matrix metalloproteinases-1, matrix metalloproteinases-9 and tissue inhibitor of matrix metalloproteinase-1 in varicose vein formation. Indian J Pathol Microbiol, 2016. 59(1): p. 25-30.
124. Chen, Y., et al., Matrix Metalloproteinases in Remodeling of Lower Extremity Veins and Chronic Venous Disease. Prog Mol Biol Transl Sci, 2017. 147: p. 267-299.
125. Xu, Y., et al., Phenotypic and functional transformation in smooth muscle cells derived from varicose veins. J Vasc Surg Venous Lymphat Disord, 2017. 5(5): p. 723-733.
126. Xu, H.M., et al., Polymorphisms in MMP-9 and TIMP-2 in Chinese patients with varicose veins. J Surg Res, 2011. 168(1): p. e143-8.
127. Jacobs, B.N., et al., Pathophysiology of varicose veins. J Vasc Surg Venous Lymphat Disord, 2017. 5(3): p. 460-467.
128. Raffetto, J.D. and F. Mannello, Pathophysiology of chronic venous disease. Int Angiol, 2014. 33(3): p. 212-21.
129. Bharath, V., S.R. Kahn, and A. Lazo-Langner, Genetic polymorphisms of vein wall remodeling in chronic venous disease: a narrative and systematic review. Blood, 2014. 124(8): p. 1242-50.
130. Ng, M.Y., et al., Linkage to the FOXC2 region of chromosome 16 for varicose veins in otherwise healthy, unselected sibling pairs. J Med Genet, 2005. 42(3): p. 235-9.
131. Mellor, R.H., et al., Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation, 2007. 115(14): p. 1912-20.
132. Matousek, V. and I. Prerovsky, A contribution to the problem of the inheritance of primary varicose veins. Hum Hered, 1974. 24(3): p. 225-35.
133. Hauge, M. and J. Gundersen, Genetics of varicose veins of the lower extremities. Hum Hered, 1969. 19(5): p. 573-80.
134. Brice, G., et al., Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet, 2002. 39(7): p. 478-83.
135. Jin, Y., et al., Analysis of the association between an insertion/deletion polymorphism within the 3' untranslated region of COL1A2 and chronic venous insufficiency. Ann Vasc Surg, 2013. 27(7): p. 959-63.
136. Kowalewski, R., et al., Influence of thrombophlebitis on TGF-beta1 and its signaling pathway in the vein wall. Folia Histochem Cytobiol, 2010. 48(4): p. 542-8.
137. Zhong, H., et al., Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Am J Hum Genet, 2010. 86(4): p. 581-91.
138. Schunkert, H., et al., Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet, 2011. 43(4): p. 333-8.
139. Lotta, L.A., Genome-wide association studies in atherothrombosis. Eur J Intern Med, 2010. 21(2): p. 74-8.
140. Hardy, J. and A. Singleton, Genomewide association studies and human disease. N Engl J Med, 2009. 360(17): p. 1759-68.
141. Shadrina, A.S., et al., Allele rs2010963 C of the VEGFA gene is associated with the decreased risk of primary varicose veins in ethnic Russians. Phlebology, 2018. 33(1): p. 27-35.
142. Kundu, S., et al., Recommended reporting standards for endovenous ablation for the treatment of venous insufficiency: joint statement of The American Venous Forum and The Society of Interventional Radiology. J Vasc Surg, 2007. 46(3): p. 582-9.
143. Brittenden, J., et al., A Randomized Trial Comparing Treatments for Varicose Veins. New England Journal of Medicine, 2014. 371(13): p. 1218-1227.
144. Sufian, S., et al., Radiofrequency ablation of the great saphenous vein, comparing one versus two treatment cycles for the proximal vein segment. Phlebology, 2015. 30(10): p. 724-8.
145. Sufian, S., et al., Endovenous heat-induced thrombosis after ablation with 1470 nm laser: Incidence, progression, and risk factors. Phlebology, 2015. 30(5): p. 325-30.
146. Li, R., et al., SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 2009. 25(15): p. 1966-7.
147. Mortazavi, A., et al., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008. 5(7): p. 621-8.
148. Lawson, N.D. and B.M. Weinstein, In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol, 2002. 248(2): p. 307-18.
149. Chen, Y.H., Y.T. Lin, and G.H. Lee, Novel and unexpected functions of zebrafish CCAAT box binding transcription factor (NF-Y) B subunit during cartilages development. Bone, 2009. 44(5): p. 777-84.
150. Kimmel, C.B., et al., Stages of embryonic development of the zebrafish. Dev Dyn, 1995. 203(3): p. 253-310.
151. Larkin, M.A., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007. 23(21): p. 2947-8.
152. Hen, G., et al., Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development. Development, 2015. 142(24): p. 4266-78.
153. Camenisch, T.D., et al., Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest, 2000. 106(3): p. 349-60.
154. Shearer, A.E., et al., Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci U S A, 2010. 107(49): p. 21104-9.
155. Ng, S.B., et al., Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet, 2010. 42(9): p. 790-3.
156. Erlich, Y., et al., Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res, 2011. 21(5): p. 658-64.
157. Green, E.D. and M.S. Guyer, Charting a course for genomic medicine from base pairs to bedside. Nature, 2011. 470(7333): p. 204-13.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74183-
dc.description.abstract人類基因體計畫所獲得基因體所有序列及基因資訊,使得人們對於遺傳學及醫學中有更深入的了解,舉凡開發新的診斷測定、標靶治療、預測疾病的發作、疾病的嚴重性和進程,目前已有許多高通量技術如微陣列晶片和次世代定序使得這些目標能夠成真。在本論文中應用微陣列晶片和次世代定序方法尋找兩種與血栓生成相關的心血管疾病-心房顫動和靜脈曲張之易感基因或可能的致病機轉。
本論文研究首先著重在心房顫動,這是最常見的持續性心律失調形式。先前的全基因體關聯研究已經找到與心房顫動風險相關的常見單核苷酸多型性。在人類基因體中,已知拷貝數變異 (CNV)會導致疾病易感性,但其在心房顫動風險中的作用仍屬未知。本研究是利用全基因體多階段方法尋找與心房顫動易感性的拷貝數變異,發現鉀離子通道相互作用蛋白1 (KCNIP1)的第一個內含子中的一段插入型的常見拷貝數變異與台灣族群中的心房顫動顯著相關。在斑馬魚中過度表現KCNIP1會誘導斑馬魚產生心房顫動。本研究是首次證實KCNIP1基因中的常見拷貝數變異為心房顫動風險的高遺傳預測因子,同時解釋了其對心房顫動致病機轉中的功能。
心房顫動會增加中風風險,因此本論文接著著重在尋找與心房顫動相關的血栓栓塞風險相關的拷貝數變異。針對心房顫動並且血栓栓塞性中風患者和來自台灣健康族群的對照者進行全基因體研究,我們首次發現GNB1、PRKCZ和GNG7基因中的缺失與α-腎上腺素能受體信號傳導途徑相關,其在心房顫動所引起之中風的風險中扮演可能的作用。
常見遺傳變異僅解釋了一部分與心房顫動相關的遺傳易感性。全基因體關聯性分析所遺漏的罕見變異可能也會增加心房顫動的遺傳風險。因此下一項工作就是利用極端特徵設計,對精心挑選具有極端表型的患者及其未受影響的患者親屬進行定序,以尋找罕見的新生突變。基於常見和罕見變異可能位於相同疾病易感基因的假設,針對全基因體關聯性分析中所發表的9個已知為心房顫動易感基因進行次世代定序,找到了PITX2基因中5'端非轉譯區中的新突變,功能性分析顯示,PITX2基因5'端非轉譯區的突變顯著負調控心房心肌細胞中PITX2的表現。
最後,本論文研究重點放在與血栓生成相關的靜脈異常疾病之一¬-下肢靜脈曲張。在這項研究中使用RNA-seq技術研究患者和對照組靜脈樣本中的全轉錄體差異表現。將具有差異表現的基因進行電腦模擬分析,發現了這些基因群參與不同的生理功能網絡,並且發現HAS2基因在調控這些途徑中扮演關鍵角色,當抑制HAS2表現會導致靜脈靜脈血流擴張,因此HAS2可能是負責調節靜脈組織中血管生成、細胞粘附、血管損傷和碳水化合物代謝的轉錄網絡。
整體而言,本論文在心血管疾病研究中使用了新穎的基因體學研究方法,新發現了與台灣心房顫動遺傳風險顯著相關的常見和罕見遺傳變異(包括拷貝數變異和單核苷酸變異)。此外我們使用全轉錄體差異表現分析研究靜脈曲張的分子機制,不僅如此,我們將研究的新發現利用分子生物學方法在動物和細胞模式中進一步獲得驗證。期望透過這樣的研究方法,使得研究人員對於疾病機制有更多的理解,並且尋找可能的治療方法,或是減緩疾病的進程甚至預防疾病的發生。
zh_TW
dc.description.abstractThe Human Genome Project attempted to obtain knowledge about the whole human genome, which thereby leads to the development of novel diagnostic assays, targeted therapies and prediction of the onset, severity and progression of diseases. This has been made possible by many high throughput technologies such as microarray and next-generation sequencing (NGS). In this work, these methods were used to identify susceptibility gene(s) understand the mechanisms of two cardiovascular diseases: atrial fibrillation (AF) and varicose vein (VV).
This work first focused on AF, the most common form of sustained cardiac arrhythmia. Previous genome-wide association studies (GWASs) have identified common single nucleotide polymorphisms (SNPs) associated with risk of AF. In the human genome, copy number variations (CNVs) are also known to contribute to disease susceptibility, but its role in AF risk had never been addressed before. Using a genome-wide multi-stage approach to identify AF susceptibility CNVs, a common CNV in the first intron of KCNIP1 gene was identified strongly associated with AF in the Taiwanese populations. KCNIP1 was physically associated with potassium Kv channels and modulates atrial transient outward current in atrial myocytes, and over-expression of KCNIP1 caused inducible AF in zebrafish. This is the first time that a common CNV in the human gene was associated with AF, pointing to a functional significance.
AF increases the risk of thromboembolic stroke. Therefore, the next study sought to identify the CNVs determining the AF-related thromboembolic stroke. Again, using a genome-wide approach, some deletions and amplifications in chromosomal regions were identified to be significantly associated with AF-related stroke in the Taiwanese population. Specifically, deletions in GNB1, PRKCZ, and GNG7 genes related to the alpha-adrenergic receptor signaling pathway may play a role in determining the risk of an AF-related stroke.
The genetic variability of common risk variants explains only a part of the genetic predisposition to AF. Rare variants missed by GWAS might also contribute to the genetic risk of AF. Hence, for the next work, an extreme-trait design was used to sequence carefully selected probands with extreme AF phenotypes and their unaffected parents to identify rare de novo variants. Based on the hypothesis that common and rare variants may co-locate in the same disease susceptibility gene, NGS was used to sequence the nine published AF susceptibility genes by GWAS. A novel mutation in the transcriptionally active enhancer region of the PITX2 gene was identified. Functional analysis showed that this mutation significantly down-regulated PITX2 expression in atrial myocytes, which might be implicated in the mechanism of AF.
Lastly, this work focused on lower extremities VV. RNA-sequencing technology and pathway analysis were used to study the global mRNA expressional change in the venous samples of diseased and control patients. Among these significantly differentially expressed genes, HAS2 was found to play a pivotal role in governing various important VV related genes and pathways. Finally, HAS2 knockdown in zebrafish resulted in dilated veins with the static venous flow, implicating that downregulation of HAS2 may underlie the mechanism of VV.
In conclusion, this work implemented innovative genomic procedures in the genetic studies of AF and VV, and provides the platform for future studies to better understand the mechanisms of human cardiovascular diseases.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:23:20Z (GMT). No. of bitstreams: 1
ntu-108-D00b48014-1.pdf: 3146160 bytes, checksum: 3dde8a2c39ecb8fdbfdad847ae22f220 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 i
Abstract iii
Table of Contents v
List of Figures ix
List of Tables xi
Chapter 1. Introduction 1
1.1. Next-generation sequencing technologies 1
1.2. Next-generation sequencing application 2
1.3. Table 7
Chapter 2. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation 8
2.1. Abstract 8
2.2. Introduction 8
2.3. Methods 10
2.3.1. Study population 10
2.3.2. Genome-wide detection of CNV and verification of CNV regions by real-time polymerase chain reaction 11
2.3.3. Zebrafish breeding, morpholino (MO) knockdown and mRNA overexpression 11
2.3.4. Extraction of zebrafish embryo heart and electrophysiological recordings 12
2.3.5. Reverse Transcription–Polymerase Chain Reaction, immunoprecipitation and immunoblotting assays 12
2.4. Results 12
2.4.1. General CNV pattern and association with the risk of AF 12
2.4.2. Validation in different geographic areas 15
2.4.3. Expression of KCNIP1 in the mammalian atrium 15
2.4.4. Effect of KCNIP1 knockdown and overexpression in hearts 16
2.4.5. Interaction of KCHIP1 protein with cardiac ionic channels 18
2.4.6. Effect of KCHIP1 in atrial myocytes 18
2.5. Discussion 19
2.6. Figures 24
2.7. Tables 33
Chapter 3. Genome-Wide Copy Number Variation Association Study of Atrial Fibrillation Related Thromboembolic Stroke 37
3.1. Abstract 37
3.2. Introduction 38
3.3. Methods 39
3.3.1. Study Population and Outcome Assessments 39
3.3.2. DNA Extraction and Genome-Wide Detection of CNV 41
3.3.3. Pathway Analysis 42
3.3.4. Statistical Analysis 42
3.4. Results 43
3.4.1. General CNV Pattern and Association with the Risk of Thromboembolic Stroke Induced by AF 43
3.4.2. Functional Integration of Identified CNVs and Genes by Pathway Analysis 44
3.5. Discussion 44
3.6. Figures 48
3.7. Tables 50
Chapter 4. Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation 53
4.1. Abstract 53
4.2. Introduction 54
4.3. Methods 56
4.3.1. Selection of trios with affected probands with extreme phenotypes of AF 56
4.3.2. DNA extraction and next-generation exon sequencing 57
4.3.3. DNA sequencing by Sanger method 58
4.3.4. Prediction of the functional significance of the identified mutations 58
4.3.5. Culture and rapid pacing of HL-1 cardiomyocytes and construction of human PITX2 gene promoter–luciferase fusion plasmid and site-directed mutagenesis 59
4.3.6. Statistical methods 60
4.4. Results 60
4.4.1. Genomic architecture of the coding regions of the nine AF susceptibility genes identified by GWAS 60
4.4.2. Exon sequencing of the nine AF susceptibility genes to identify novel mutations in probands with extreme phenotypes of AF 61
4.4.3. Characterization of identified novel mutations 62
4.4.4. Functional significance of the identified mutations 63
4.5. Discussion 64
4.6. Figures 70
4.7. Tables 72
Chapter 5. Global Expression Profiling Identifies a Novel Hyaluronan Synthases 2 Gene in the Pathogenesis of Lower Extremity Varicose Veins 77
5.1. Abstract 77
5.2. Introduction 78
5.3. Methods 79
5.3.1. Patient Selection 79
5.3.2. Surgical Removal of Venous Samples 80
5.3.3. Sample Preparation and RNA Sequencing 80
5.3.4. Reverse Transcription Polymerase Chain Reaction 81
5.3.5. Bioinformatics Analysis of RNA Sequence Data 82
5.3.6. Screening of Differentially Expressed Genes (DEGs) 82
5.3.7. Pathway and Network Analysis 82
5.3.8. Zebrafish Model 83
5.3.9. Antisense Morpholino Design and Microinjection 84
5.3.10. Statistical Methods 85
5.4. Results 85
5.4.1. Global Expressional Profiling of VV 85
5.4.2. Downregulation of Hyaluronan Synthases 2 in Venous Tissues from Patients with VV 86
5.4.3. Knockdown of HAS2 Results in Venous Dilation and Blood Flow Stasis in Zebrafish 87
5.5. Discussion 88
5.6. Figures 91
5.7. Tables 96
Chapter 6. Future directions and challenges 104
References 106
dc.language.isoen
dc.title基因體學新穎研究方法在心血管疾病中的應用zh_TW
dc.titleApplication of Innovative Research Methods of Genomics in Cardiovascular Diseasesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee李心予,曾新穆,柯毓麟,張坤正,葉宏一
dc.subject.keyword基因體學,心房顫動,靜脈曲張,拷貝數變異,罕見變異,轉錄體學,zh_TW
dc.subject.keywordGenomics,atrial fibrillation,varicose vein,copy number variation,rare variation,transcriptome,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201901919
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept基因體與系統生物學學位學程zh_TW
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved