Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈湯龍(Tang-Long Shen)
dc.contributor.authorChia-Yu Yangen
dc.contributor.author楊加宇zh_TW
dc.date.accessioned2021-06-17T08:22:49Z-
dc.date.available2023-01-25
dc.date.copyright2021-03-11
dc.date.issued2020
dc.date.submitted2021-01-27
dc.identifier.citationAlvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M. J. 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature biotechnology 29:341-345.
Berry, D. A., Cronin, K. A., Plevritis, S. K., Fryback, D. G., Clarke, L., Zelen, M., Mandelblatt, J. S., Yakovlev, A. Y., Habbema, J. D. F., and Feuer, E. J. 2005. Effect of screening and adjuvant therapy on mortality from breast cancer. New England Journal of Medicine 353:1784-1792.
Boughorbel, S., Jarray, F., and El-Anbari, M. 2017. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PloS one 12:e0177678.
Cain, N. E., and Starr, D. A. 2015. SUN proteins and nuclear envelope spacing. Nucleus 6:2-7.
Cayado-Gutiérrez, N., Moncalero, V. L., Rosales, E. M., Berón, W., Salvatierra, E. E., Alvarez-Olmedo, D., Radrizzani, M., and Ciocca, D. R. 2013. Downregulation of Hsp27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN. Cell Stress Chaperones 18:243-249.
Chicco, D., and Jurman, G. 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics 21:6.
Chung, Y., Rehman, A., Ahn, H., Sim, J., Chung, M. S., Choi, D., Paik, S. S., and Jang, K. 2017. Myelin expression factor 2 expression is associated with aggressive phenotype in triple-negative breast cancer. International Journal of Clinical Experimental Pathology 10:4682-4687.
Civin, C. I., Strauss, L., Brovall, C., Fackler, M. J., Schwartz, J., and Shaper, J. 1984. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. The Journal of Immunology 133:157-165.
Clayton, A. 2012. Cancer cells use exosomes as tools to manipulate immunity and the microenvironment. Oncoimmunology 1:78-80.
Cui, R., Wang, C., Zhao, Q., Wang, Y., and Li, Y. 2020. Serum Carboxypeptidase N1 Serves as a Potential Biomarker Complementing CA15-3 for Breast Cancer. Anti-Cancer Agents in Medicinal Chemistry.
Di Meo, A., Bartlett, J., Cheng, Y., Pasic, M. D., and Yousef, G. M. 2017. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Molecular cancer 16:80.
Esserman, L. J., Shieh, Y., Park, J. W., and Ozanne, E. M. 2007. A role for biomarkers in the screening and diagnosis of breast cancer in younger women. Expert review of molecular diagnostics 7:533-544.
Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., and Nuovo, G. J. 2012. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences 109:E2110-E2116.
Hood, J. L., San, R. S., and Wickline, S. A. 2011. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer research 71:3792-3801.
Hood, L. 2013. Systems biology and p4 medicine: past, present, and future. Rambam Maimonides medical journal 4.
Jia, W., Lu, R., Martin, T. A., and Jiang, W. G. 2014. The role of claudin‑5 in blood‑brain barrier (BBB) and brain metastases. Molecular medicine reports 9:779-785.
Kong, X., Guan, J., Ma, W., Li, Y., Xing, B., Yang, Y., Wang, Y., Gao, J., Wei, J., and Yao, Y. 2016. CD34 over-expression is associated with glioma higher WHO grade. Medicine 95.
Lal-Nag, M., and Morin, P. J. 2009. The claudins. Genome biology 10:1-7.
Li, X., Zhao, D., Guo, Z., Li, T., Qili, M., Xu, B., Qian, M., Liang, H., Xiaoqiang, E., and Gitau, S. C. 2016. Overexpression of SerpinE2/protease nexin-1 contribute to pathological cardiac fibrosis via increasing collagen deposition. Scientific reports 6:37635.
Marrugo-Ramírez, J., Mir, M., and Samitier, J. 2018. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. International journal of molecular sciences 19:2877.
Matthews, K. W., Mueller-Ortiz, S. L., and Wetsel, R. A. 2004. Carboxypeptidase N: a pleiotropic regulator of inflammation. Molecular immunology 40:785-793.
McCready, J., Sims, J. D., Chan, D., and Jay, D. G. 2010. Secretion of extracellular hsp90α via exosomes increases cancer cell motility: a role for plasminogen activation. BMC cancer 10:294.
Mehta, L. S., Watson, K. E., Barac, A., Beckie, T. M., Bittner, V., Cruz-Flores, S., Dent, S., Kondapalli, L., Ky, B., and Okwuosa, T. 2018. Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation 137:e30-e66.
Moro, K., Kawaguchi, T., Tsuchida, J., Gabriel, E., Qi, Q., Yan, L., Wakai, T., Takabe, K., and Nagahashi, M. J. O. 2018. Ceramide species are elevated in human breast cancer and are associated with less aggressiveness. 9:19874.
Nasser, M. W., Qamri, Z., Deol, Y. S., Ravi, J., Powell, C. A., Trikha, P., Schwendener, R. A., Bai, X.-F., Shilo, K., and Zou, X. 2012. S100A7 enhances mammary tumorigenesis through upregulation of inflammatory pathways. Cancer research 72:604-615.
Ozmen, N., Dapp, R., Zapf, M., Gemmeke, H., Ruiter, N. V., and van Dongen, K. W. 2015. Comparing different ultrasound imaging methods for breast cancer detection. IEEE transactions on ultrasonics, ferroelectrics, frequency control 62:637-646.
Palmirotta, R., Lovero, D., Cafforio, P., Felici, C., Mannavola, F., Pellè, E., Quaresmini, D., Tucci, M., and Silvestris, F. 2018. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Therapeutic advances in medical oncology 10:1758835918794630.
Ramteke, A., Ting, H., Agarwal, C., Mateen, S., Somasagara, R., Hussain, A., Graner, M., Frederick, B., Agarwal, R., and Deep, G. 2015. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Molecular carcinogenesis 54:554-565.
Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C., and Geuze, H. J. 1996. B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine 183:1161-1172.
Roganovic, D., Djilas, D., Vujnovic, S., Pavic, D., and Stojanov, D. 2015. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer. Bosnian journal of basic medical sciences 15:64.
Roma-Rodrigues, C., Fernandes, A. R., and Baptista, P. V. 2014. Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. BioMed research international 2014.
Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., Van De Rijn, M., and Jeffrey, S. S. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences 98:10869-10874.
Sahu, R., Kaushik, S., Clement, C. C., Cannizzo, E. S., Scharf, B., Follenzi, A., Potolicchio, I., Nieves, E., Cuervo, A. M., and Santambrogio, L. 2011. Microautophagy of cytosolic proteins by late endosomes. Developmental cell 20:131-139.
Smirnova, T., Bonapace, L., MacDonald, G., Kondo, S., Wyckoff, J., Ebersbach, H., Fayard, B., Doelemeyer, A., Coissieux, M.-M., and Heideman, M. R. 2016. Serpin E2 promotes breast cancer metastasis by remodeling the tumor matrix and polarizing tumor associated macrophages. Oncotarget 7:82289.
Steiner, E., Klubert, D., and Knutson, D. 2008. Assessing breast cancer risk in women. American family physician 78:1361-1366.
Tian, T., Li, X., Hua, Z., Ma, J., Wu, X., Liu, Z., Chen, H., and Cui, Z. 2017. S100A7 promotes the migration, invasion and metastasis of human cervical cancer cells through epithelial–mesenchymal transition. Oncotarget 8:24964.
Wang, J., Chang, S., Li, G., and Sun, Y. 2017. Application of liquid biopsy in precision medicine: opportunities and challenges. Frontiers of medicine 11:522-527.
Wu, T.-Y., Wang, Y.-S., Song, Y.-C., Chen, Z.-Y., Chen, Y.-T., Chiu, C.-C., and Wu, C.-Y. 2017. Fine-tune regulation of carboxypeptidase N1 controls vascular patterning during zebrafish development. Scientific reports 7:1-14.
Yang, J., Zhao, X., Lu, X., Lin, X., and Xu, G. 2015. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Frontiers in molecular biosciences 2:4.
Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: a journal of integrative biology 16:284-287.
Yu, G., Wang, L.-G., Yan, G.-R., and He, Q.-Y. 2014. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31:608-609.
Zhang, H.-G., and Grizzle, W. E. 2014. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. The American journal of pathology 184:28-41.
Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., and Amigorena, S. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nature medicine 4:594-600.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74171-
dc.description.abstract癌症已被世界衛生組織報導為第二大死因,且乳癌為在女性中最常見之癌症。正確的診斷及預後對於提高乳癌之存活率為關鍵。近年來,液態活檢(liquid biopsy)為精準醫學奠定了基礎。液態活檢存在於血液等各種體液中,具有多種動態生物分子如核酸及蛋白質並提供了許多有用的資訊。胞外體為液態活檢中常見的目標之一,胞外體為由細胞分泌出大小介於30至100奈米雙層脂質脂囊泡,內含許多運送物質如核酸、蛋白質、脂質及代謝物等。胞外體在腫瘤微環境中扮演重要的角色,包含血管新生、細胞遷移、細胞侵襲及轉移。因此,我們分析乳腺癌外泌體的蛋白質含量,以期找出潛在的生物標記和與癌症相關的機制。
為了要找出潛在的生物標誌,我們從癌症病患、良性腫瘤病患及正常受試者分離出胞外體並以液相層析串聯質譜儀(LC-MS/MS)分析蛋白質體。接著透過主成分分析(principal component analysis, PCA)驗證在差異表現蛋白質組的重要性。另外,差異表現之蛋白質進行了三種建模,分別為線性判別分析(LDA),廣義線性模型(GLM)和支援向量機(SVM)來預測潛在的生物標記。另一方面,對從細胞株分離出之胞外體之蛋白質體分析以進行機制探討。
功能性註解工具(IPA)和基因集富集分析(GSEA)顯示了乳腺癌發展過程中胞外體參與之生物學途徑。為了探討腫瘤胞外體蛋白質之作用及功能,將進行基因編輯及功能測定。在本研究中,我們發現了潛在的乳腺癌檢測生物標誌,並為參與乳腺癌發展的胞外體提供新的見解。
zh_TW
dc.description.abstractIt has been reported that cancer is the second leading cause of death all over the world by world health organization (WHO). Besides, breast cancer is one of the most common cancer among women. In order to improve breast cancer outcomes and survival, an accuracy early detection and prognosis are critical. In recent years, liquid biopsies serve as a solid foundation for precision medicine. Liquid biopsies bear numerous biological molecules like nucleic acid, proteins, which providing valuable information. These molecules contain dynamic biomarkers that exist within a variety of body fluids including blood, which could be applied to detection. One of the most common targets for liquid biopsy is exosome. Exosomes are nanoparticles which commonly defined as vesicles ranging from 30 nm to 100 nm and secreted from cells. It has been well studied that exosomes contain varied cargos, such as nucleic acid, proteins, lipids, and metabolites with lipid bilayer enclosed. Exosomes with the cargos are important role of microenvironment which have influence on metastasis. Exosomes also affect cancer progression such as angiogenesis, cell migration, and invasion. Herein, we intend to analyze the protein content of exosomes from breast cancer to discover potential biomarkers and cancer-related mechanism.
In order to discover potential biomarkers, exosomes from breast cancer patients, patients with benign tumor and normal participants were collected and then subjected for proteome analyses by LC-MS/MS. The sets of differentially expressed proteins were then examined by principal component analysis (PCA) to verify their significance. Moreover, three kinds of modeling methods, Linear Discriminant Analysis (LDA), General Linear Model (GLM), and Support Vector Machine (SVM) with forward selection were performed to predict potential biomarkers. On the other hand, exosomes from cell lines were collected and analyzed for the purpose of mechanistic studies. Functional annotation tools such as Ingenuity Pathway Analysis (IPA) and gene set enrichment analysis (GSEA) revealed biological pathways engaged by exosomes during breast cancer development. To explore the role and function of tumor-related exosomes, gene editing and functional assay will be performed. In our study, we aim to discover potential biomarkers for breast cancer detection and provide new insight of exosomal participated in breast cancer development.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:22:49Z (GMT). No. of bitstreams: 1
U0001-2501202116224000.pdf: 4359458 bytes, checksum: 5e42343579dd4dba5b7e6491f0088323 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 i
Abstract i
TABLE OF CONTENTS iii
LIST OF FIGURES v
Introduction 1
Breast cancer 1
Diagnosis of breast cancer 2
Liquid biopsy 3
Exosomes 4
Materials and Methods 7
Human serum Samples 7
Cell culture 7
Exosome isolation 8
Characterization of exosomes 9
Liquid chromatography-tandem mass spectrometry (LC/MS) analysis 9
Data pre-processing and differential expression analysis 10
Machine Learning 11
Bioinformatics analysis 11
Western blotting 12
Statistical analysis 13
Results 13
Pre-processing strategy before analysis 13
Differential expression analysis of exosomal proteomic data from serum samples 14
Modeling with the differentially expressed proteins 15
Characteristic of exosomes from cell lines 16
Gene Set Enrichment Analysis of differentially expressed proteins from cell line 17
Integration between exosomal proteomic data from serum samples and cell lines 18
Ingenuity Pathway Analysis of candidate proteins 19
Discussion 20
Strategy for pre-processing data 20
Obstacles regarding small sample size 21
Proteins selected from modeling result 22
Discussion of results of GSEA based on GO database 24
Candidate proteins expressed differently between serum samples and cell lines 25
Figures and Tables 26
Supplementary figures 37
Reference 38
Appendix 46
dc.language.isoen
dc.title乳癌進程中胞外體之蛋白質體分析及機制探討zh_TW
dc.titleProteomic profiling and mechanistic studies of breast cancer derived exosomes during tumor progressionen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee余兆松(Jau-Song Yu),蔡政安(Chen-An Tsai),周涵怡(Han-Yi Chou),郭文宏(Wen-Hung Kuo)
dc.subject.keyword乳癌,胞外體,液態活檢,蛋白質體學,生物標誌,zh_TW
dc.subject.keywordbreast cancer,exosome,liquid biopsy,proteomics,biomarker,en
dc.relation.page49
dc.identifier.doi10.6342/NTU202100159
dc.rights.note有償授權
dc.date.accepted2021-01-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-2501202116224000.pdf
  目前未授權公開取用
4.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved