Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連豊力
dc.contributor.authorTzu-Chun Chiuen
dc.contributor.author邱子俊zh_TW
dc.date.accessioned2021-06-17T08:22:03Z-
dc.date.available2019-08-18
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation[1: Kim et al. 2017] Seong-Woo Kim, Gi-Poong Gwon, Woo-Sol Hur, Daejin Hyeon, Dae-Young Kim, Sung-Hyun Kim, Dong-Kyoung Kye, Sang-Hyun Lee, Soomok Lee, Myung-Ok Shin, and Seung-Woo Seo, “Autonomous Campus Mobility Services Using Driverless Taxi,” IEEE Transactions on Intelligent Transportation Systems, Vol. 18, pp. 3513 - 3526, Dec. 2017.
[2: Hata et al. 2018] Alberto Y. Hata, Fabio T. Ramos, and Denis F. Wolf , “Monte Carlo Localization on Gaussian Process Occupancy Maps for Urban Environments,” IEEE Transactions on Intelligent Transportation Systems, Vol. 19, pp. 2893-2902, Sept. 2018.
[3: Hata & Wolf 2016] Alberto Y. Hata and Denis F. Wolf, “Feature Detection for Vehicle Localization in Urban Environments Using a Multilayer LIDAR,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 2, pp. 420-429, Feb. 2016.
[4: Himmelsbach et al. 2010] M. Himmelsbach, Felix v. Hundelshausen, and H.-J. Wuensche, “Fast Segmentation of 3D Point Clouds for Ground Vehicles,” 2010 IEEE Intelligent Vehicles Symposium, University of California, San Diego, CA, USA, pp. 560-565, June 21-24, 2010.
[5: Douillard et al. 2011] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton, and A. Frenkel, “On the Segmentation of 3D LIDAR Point Clouds,” 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 3434-3440, May 9-13, 2011.
[6: Moosmann et al. 2009] Frank Moosmann, Oliver Pink and Christoph Stiller, “Segmentation of 3D Lidar Data in non-flat Urban Environments using a Local Convexity Criterion,” 2009 IEEE Intelligent Vehicles Symposium, Xi'an, China, pp. 215-220, 3-5 June 2009.
[7: Shin et al. 2017] Myung-Ok Shin, Gyu-Min Oh, Seong-Woo Kim, and Seung-Woo Seo, “Real-Time and Accurate Segmentation of 3-D Point Clouds Based on Gaussian Process Regression,” IEEE Transactions on Intelligent Transportation Systems, Vol. 18, pp. 3363-3377, Dec. 2017.
[8: Kumar et al. 2014] Pankaj Kumar, Conor P. McElhinney, Paul Lewis, and Timothy McCarthy, “Automated road markings extraction from mobile laser scanning data,” International Journal of Applied Earth Observation and Geoinformation, Vol. 32, pp. 125-137, Oct. 2014.
[9: Yu et al. 2014] Yongtao Yu, Jonathan Li, Haiyan Guan, Fukai Jia, and Cheng Wang, “Learning Hierarchical Features for Automated Extraction of Road Markings From 3-D Mobile LiDAR Point Clouds,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, pp. 709-726, 04 Sep. 2014.
[10: Hur et al. 2015] Woo-Sol Hur, Seung-Tak Choi, Seong-Woo Kim and Seung-Woo Seo, “Precise Free Space Detection and Its Application to Background Extraction,” 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, Cambodia, pp. 179-184, 15-17 July 2015.
[11: Zeng et al. 2018] Yiming Zeng, Yu Hu, Shice Liu, Jing Ye, Yinhe Han, Xiaowei Li, and Ninghui Sun, “RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving,” IEEE Robotics and Automation Letters, Vol. 3, pp. 3434-3440, 04 July 2018.
[12: Azim & Aycard 2014] Asma Azim and Olivier Aycard, “Layer-based Supervised Classification of Moving Objects in Outdoor Dynamic Environment using 3D Laser Scanner,” 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, Michigan, USA, pp. 1408-1414, 8-11 June 2014.
[13: Asvadi et al. 2015] Alireza Asvadi, Paulo Peixoto, and Urbano Nunes, “Detection and Tracking of Moving Objects Using 2.5D Motion Grids,” 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, Spain, pp. 788-793, 15-18 Sept. 2015.
[14: Zhang et al. 2013] Liang Zhang, Qingquan Li, Ming Li, Qingzhou Mao, and Andreas Nüchter, “Multiple Vehicle-like Target Tracking Based on the Velodyne LiDAR,” 2013 IFAC Intelligent Autonomous Vehicles Symposium, Gold Coast, Australia, pp. 126-131, June 26-28, 2013.
[15: Kusenbach et.al 2016] Michael Kusenbach, Michael Himmelsbach, and Hans-Joachim Wuensche, “A New Geometric 3D LiDAR Feature for Model Creation and Classification of Moving Objects,” 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, pp. 272- 278, June 19-22, 2016.
[16: Zhao & Yuan 2012] Gangqiang Zhao and Junsong Yuan, “Curb Detection and Tracking Using 3D-LIDAR Scanner,” 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, pp. 437-440, 30 Sept.-3 Oct. 2012.
[17: Hata et al. 2014] Alberto Y. Hata, Fernando S. Osorio, and Denis F. Wolf, “Robust Curb Detection and Vehicle Localization in Urban Environments,” 2014 IEEE Intelligent Vehicles Symposium, Dearborn, Michigan, USA, pp. 1257-1262, 8-11 June 2014.
[18: Sefati et al. 2017] M. Sefati, M. Daum, B. Sondermann, K. D. Kreisköther, and A. Kampker, “Improving Vehicle Localization Using Semantic and Pole-Like Landmarks,” IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, pp. 13-19, June 11-14, 2017.
[19: Skog & Handel 2009] Isaac Skog and Peter Handel, “In-Car Positioning and Navigation Technologies—A Survey,” IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 1, pp. 4-21, Mar. 2009.
[20: Shen et al. 2018] Macheng Shen, Jing Sun, Huei Peng, and Ding Zhao, “Improving Localization Accuracy in Connected Vehicle Networks Using Rao-Blackwellized Particle Filters: Theory, Simulations, and Experiments,” IEEE Transactions on Intelligent Transportation Systems, pp. 1-12, Sep. 2018.
[21: Choi & Maurer 2016] Jaebum Choi and Markus Maurer, “Local Volumetric Hybrid-Map-Based Simultaneous Localization and Mapping With Moving Object Tracking,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, pp. 2440-2455, Sept. 2016.
[22: Saarinen et al. 2013] Jari Saarinen, Henrik Andreasson, Todor Stoyanov, and Achim J. Lilienthal, “Normal Distributions Transform Monte-Carlo Localization,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 382-389, 3-7 Nov. 2013.
[23: Qin et al. 2017] Hua Qin, Yang Peng, and Wensheng Zhang, “Vehicles on RFID: Error-Cognitive Vehicle Localization in GPS-Less Environments,” IEEE Transactions on Vehicular Technology, Vol. 66, pp. 9943-9957, Nov. 2017.
[24: Suhr et al. 2017] Jae Kyu Suhr, Jeungin Jang, Daehong Min, and Ho Gi Jung, “Sensor Fusion-Based Low-Cost Vehicle Localization System for Complex Urban Environments,” IEEE Transactions on Intelligent Transportation Systems, Vol. 18, pp. 1078-1086, May 2017.
[25: Cui et al. 2016] Dixiao Cui, Jianru Xue, and Nanning Zheng, “Real-Time Global Localization of Robotic Cars in Lane Level via Lane Marking Detection and Shape Registration,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, pp. 1039-1050, April 2016.
[26: Quigley et al. 2009] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob Wheeler, Andrew Ng, “ROS: an open-source Robot Operating System,” ICRA Workshop on Open Source Software, 2009.
[27: Koenig & Howard 2004] Nathan Koenig, Andrew Howard, “Design and use paradigms for Gazebo, an open-source multi-robot simulator,” in Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Japan, Vol.3, pp. 2149-2154, Sep. 28 – Oct. 2, 2004.
[28: Hinks et al. 2012] Tommy Hinks, Hamish Carr, Linh Truong-Hong, and Debra F. Laefer, “Point Cloud Data Conversion into Solid Models via Point-Based Voxelization,” Journal of Surveying Engineering, Jan. 2012.
[29: Luo et al. 2016] Zhongzhen Luo, Saeid Habibi, and Martin V. Mohrenschildt, “LiDAR Based Real Time Multiple Vehicle Detection and Tracking,” World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol.10, No.6, pp. 1125-1132, 2016.
[30: Li et al. 2018] Bing Li, Liang Yang, Jizhong Xiao, Rich Valde, Michael Wrenn, and Jim Leflar, “Collaborative Mapping and Autonomous Parking for Multi-Story Parking Garage,” IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 5, pp. 1629-1638, May 2018.
[31: Zhou et al. 2018] Hongliang Zhou, Fengjiao Jia, Houhua Jing, Zhiyuan Liu, and Levent G¨uvenc, “Coordinated Longitudinal and Lateral Motion Control for Four Wheel Independent Motor-Drive Electric Vehicle,” IEEE Transactions on Vehicular Technology, Vol. 67, No. 5, pp. 3782-3790, May 2018.
[32: Zhang & Singh 2014] Ji Zhang, and Sanjiv Singh, “LOAM: Lidar Odometry and Mapping in Real-time,” Robotics: Science and Systems, Berkeley, CA, USA, July 12-16, 2014.
[33: Ronzoni et al. 2011] Davide Ronzoni, Roberto Olmi, Cristian Secchi and Cesare Fantuzzi, “AGV Global Localization Using Indistinguishable Artificial Landmarks,” in Proceedings of IEEE International Conference on Robotics and Automation, Berkeley, Shanghai, China, May 9-13, 2011.
[34: Besl & McKay 1992] Paul J. Besl, Neil D. McKay, “A method for registration of 3-D shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256, Feb., 1992.
[35: Thrun et al. 2005] Sebastian Thrun, Wolfram Burgard, and Dieter Fox, “Probabilistic Robotics,” Cambridge, MA, USA: MIT Press, 2005.
[36: Rosbook 2017] Rosbook. (Nov. 2017). effective robotics programming with ros. GitHub repository. [Online]. Available: https://github.com/rosbook/effective_robotics_programming_with_ros
[37: O'Quin 2013] Jack O'Quin. (Jul. 2013). velodyne. GitHub repository. [Online]. Available: https://github.com/ros-drivers/velodyne
[38: Zhang 2014] Ji Zhang. (Jul. 2014). loam_velodyne. GitHub repository. [Online]. Available: https://github.com/laboshinl/loam_velodyne
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74152-
dc.description.abstract在自動駕駛車輛系統中,車輛定位是重要的一個部分,因為車輛定位是完成其他的任務基礎,如: 路徑規劃或車輛導航。雖然全球定位系統(GPS)廣泛的提供車輛的位置資訊,但其提供的資訊在城市中容易產生偏差或因為遮蔽造成信號缺失。為了確保定位的準確性,應使用額外的環境資訊來定位車輛。本文提出了一個基於光達的定位演算法。從光達數據中提取特徵並在事先建立好的地圖中實現車輛定位。
在特徵檢測演算法中,由光達產生的三維點雲數據中擷取出具有特殊幾何特徵的原質物體做為特徵。利用多種點雲處理辦法檢測出環境中的物體,並利用所提出的二維圓形模型對不同的物體進行分類以確認是否為所要的特徵。利用所提出的多層分析演算法,基於光達的特性來減少誤判的發生。
本文使用了蒙特卡洛演算法,它是一個基於粒子濾波器的車輛定位演算法。首先,速度運動模型利用慣性測量單元的數據來預測車輛的位姿。基於預測的車輛位姿,利用原質特徵點來確定車輛在預建地圖上的位姿。其中利用兩個測量模型,似然域測距儀模型與光束場測距儀模型,量測特徵點與地圖的關係並計算每個粒子的權重。藉由特徵點與慣性測量單元迭代地更新車輛在地圖上的位姿。由實驗結果得知,利用所提出的演算法平均估測的偏差與實際軌跡約為0.3公尺。
zh_TW
dc.description.abstractLocalization is an important part of an autonomous vehicle system, because it enables other basic tasks to be accomplished, such as path planning and navigation. Although GPS devices provide the vehicle position widely, they are susceptible to bias and signal unavailability in urban scenarios. To ensure the localization accuracy, additional information should be used to localize the vehicle. In this thesis, a LiDAR-based localization algorithm is proposed. The features are extracted from the LiDAR data and used to localize in a prebuild map.
For feature detection, the primitive objects which contain special geometric feature will be extracted from the 3-D point cloud data captured by LiDAR. Several point cloud processing methods are used to detect the objects in the environment, and the proposed 2-D circle model is used to classify the features from different objects. To reduce the false positives, the multi-layer algorithm based on the LiDAR characteristic is applied.
For vehicle localization, the Monte Carlo algorithm is applied in this thesis, and it is a particle-based method. First, the velocity motion model utilizes IMU data to predict a vehicle state. Based on the predicted vehicle state, the primitive feature points are utilized to determine the vehicle pose on the prebuild map. Two measurement models, the likelihood field range finder model and the beam field range finder model, are applied to measure the likelihood between the feature points and the map and calculate the weight of each particle. The estimated vehicle state on the prebuild map iteratively updates based on the feature points and IMU data. The experiment results show that the average difference between the ground truth path and the estimated path is about 0.3 m.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:22:03Z (GMT). No. of bitstreams: 1
ntu-108-R06921068-1.pdf: 14606066 bytes, checksum: 15368fed4b68c6c65663691a3ec9d476 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 i
ABSTRACT iii
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Formulation 2
1.3 Contributions 4
1.4 Organization of the Thesis 5
Chapter 2 Background and Literature Survey 6
2.1 Autonomous Driving System 6
2.2 Lidar-Based Perception 7
2.3 Localization of Autonomous Vehicle 9
2.4 Summary 12
Chapter 3 Related Algorithms 14
3.1 Iterative Closest Point (ICP) 14
3.2 LiDAR Odometry 15
3.3 Triangulation Method 17
3.4 Particle Filter 18
Chapter 4 Primitive Feature Object Detection 21
4.1 System Architecture 23
4.2 Ground Plane Extraction 25
4.2.1 Voxel Grid Downsample 25
4.2.2 2D Grid Ground Remove Algorithm 27
4.3 Object Detection 28
4.4 Primitive Feature Object Classification 30
4.4.1 2D Grid Circle model 31
4.4.2 Multi-Layers Analyze 33
4.5 Summary 36
Chapter 5 Vehicle Localization with Monte Carlo Algorithm 38
5.1 System Architecture 38
5.2 Monte Carlo Localization Algorithm 40
5.3 Velocity Motion Model 42
5.4 Measurement Update 44
5.4.1 Likelihood Field Range Finder Model 45
5.4.2 Beam Field Range Finder Model 46
5.5 Cost Function of Vehicle Localization 47
5.6 Summary 49
Chapter 6 Simulation and Experimental Results and Analysis 51
6.1 The Overall System Architecture 51
6.2 Experiment Setup 52
6.2.1 Software Platform 53
6.2.2 Hardware Platform 55
6.2.3 Map Building Process 56
6.2.4 Experiments Ground Truth Obtain 58
6.3 Experimental Scenarios 62
6.3.1 Experiments 62
6.3.2 Simulation 64
6.4 Simulation Studies 65
6.4.1 Different Object Analysis 66
6.4.2 Likelihood Value for Localization Accuracy 70
6.4.3 Indoor Environment 75
6.4.4 Outdoor Environment with Both Side Features 78
6.5 Experimental Analysis 87
6.5.1 Fifth Floor of Ming Da Hall 88
6.5.2 Palm Avenue 102
6.5.3 Royal Palm Boulevard 117
6.6 Summary 137
Chapter 7 Conclusions and Future Works 143
7.1 Conclusions 143
7.2 Future Works 144
References 146
dc.language.isoen
dc.subject原質特徵感測zh_TW
dc.subject車輛定位zh_TW
dc.subject自駕車輛系統zh_TW
dc.subject三維光達zh_TW
dc.subject慣性測量單元zh_TW
dc.subject粒子濾波器zh_TW
dc.subject3D LiDARen
dc.subjectinertial measurement unit (IMU)en
dc.subjectAutonomous driving systemen
dc.subjectparticle filteren
dc.subjectMonte Carlo algorithmen
dc.subjectprimitive feature detectionen
dc.subjectvehicle localizationen
dc.title利用基於光達的幾何原質物體偵測與蒙特卡洛演算法之車輛定位系統zh_TW
dc.titleA Vehicle Localization System Using Lidar-Based Geometric Primitive Object Detection and Monte Carlo Algorithmen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李後燦,許志明
dc.subject.keyword自駕車輛系統,車輛定位,原質特徵感測,粒子濾波器,慣性測量單元,三維光達,zh_TW
dc.subject.keywordAutonomous driving system,vehicle localization,primitive feature detection,Monte Carlo algorithm,particle filter,inertial measurement unit (IMU),3D LiDAR,en
dc.relation.page150
dc.identifier.doi10.6342/NTU201903453
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
14.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved