請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74143完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭富書 | |
| dc.contributor.author | Guan-Liang Lin | en |
| dc.contributor.author | 林冠良 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:21:41Z | - |
| dc.date.available | 2020-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | 1. 鄭富書、陳正旺(2007):含裂縫岩石受壓引致破裂延伸之數值分析研究,第四屆海峽兩岸結構與岩土工程學術研討會論文集,杭州,第1060-1066頁。.
2. 鄭富書、林銘郎(1994):岩石破壞歷史的判斷利器─裂形學,地工技術雜誌,第46期,第67-76頁。 3. 鄭富書(1994):軟弱岩盤承載行為研究(I),行政院國家科學委員會專題研究計畫成果報告。 4. 黃燦輝(1994):多軸壓力下岩體變形性研究,國立台灣大學土木工程學研究所研究報告,中興科技研究發展基金會,160頁。 5. 蔡亦強(1994):岩石含雁行排列節理的破裂行為之模型研究,國立台灣大學土木工程學研究所碩士論文。 6. 林鴻州(2001):模擬岩石裂面型態及機制初探,國立台灣大學土木工程學研究所碩士論文。 7. 李宏輝(2008):砂岩力學行為之微觀機制:以分離元素法探討,國立台灣大學土木工程學研究所博士論文。 8. 應傳智(1995):人工軟弱岩石之研究,國立台灣大學土木工程學研究所碩士論文。 9. 黃百懃(2010):應用個別元素法探討人造岩石裂隙延伸行為,國立台灣大學土木工程學研究所碩士論文。 10. 陳耀榮(2011):利用個別元素法探討人造岩石之裂隙延伸及力學行為,國立台灣大學土木工程學研究所碩士論文。 11. Amadei, B., Strength of a regularly jointed rock mass under biaxial and axisymmetric loading conditions. International Journal of Rock Mechanics and Mining Sciences, 1988. 25(1): p. 3-13. 12. Atkinson, C., Combined mode fracture via the cracked Brazilian disk test. International Journal of Fracture, 1982. 18(4): p. 279-291. 13. Awaji, H., Sato, S., Combined mode fracture toughness measurement by the disk test. Journal of Engineering Materials and Technology, 1978. 100: p. 175-182. 14. Bieniawski, Z.T., Bernede, M. J., Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978. 16(2): p. 137-140. 15. Bobet, A., H. H. Einstein, Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences, 1998. 35(7): p. 863-888. 16. Cai, M., Kaiser, P.K., Numerical simulation of the brazilian test and the tensile strength of aniostropic rocks and rocks with pre-existing cracks. International Journal of Rock Mechanics and Mining Sciences, 2004. 41(3): p. 478-483. 17. Chen, C.S., Pan, E., Amadei, B., Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. International Journal of Rock Mechanics and Mining Sciences, 1998. 35(2): p. 195-218. 18. Gehle, C., Kutter, H.K., Breakage and shear behaviour of intermittent rock joints. International Journal of Rock Mechanics and Mining Sciences, 2003. 40(5): p. 687-700. 19. Germanovich, L.N., Carter, B.J., Ingraffea, A.R., Dyskin, A.V., Lee, K.K., Mechanics of 3-D crack growth under compressive loads. Rock mechanics : tools and techniques : Proceedings of the 2nd North American Rock Mechanics Symposium, NARMS '96, a regional conference of ISRM, Montréal, Québec, Canada, 19-21 June 1996, ed. M. Aubertin, F. Hassani, and H. Mitri. 1996, p.1151-1161. 20. Griffith, A.A., The phenomena of rupture and flow in solid. Philosophical Transactions of the Royal Society of London, 1920. 221: p. 163-198. 21. Hoek, E., Bieniawski, Z. T., Brittle fracture propagation in rock under compression. International Journal of Fracture, 1965. 1(3): p. 137-155. 22. Hsieh, Y.M., Li, H. H., Huang, T.H, Jeng, F. S., Interpretations on how the macroscopic mechanical behavior of sandstone affected by microscopic properties—Revealed by bonded-particle model. Engineering Geology, 2008. 99(1-2): p. 1-10. 23. Imber, J.T., G. W., Childs, C., Walsh, J.J., Manzocchi, T., Heath, A.E., Bonson, C.G., Strand, J., Three-dimensional distinct element modelling of relay growth and breaching along normal faults. Journal of Structural Geology, 2004. 26(10): p. 1897-1911. 24. Iqbal, M.J., Mohanty, B., Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks. Rock Mechanics and Rock Engineering, 2007. 40(5): p. 453-475. 25. Irwin, G., Analysis of stresses and strains near the end of a crak traversing a plate. Journal of Applied Mechanics, 1957. 24: p. 361-364. 26. Irwin, G.R., Fracture. Handbuch der Physik. 1958, New York 27. ISRM, Suggested methods for determining tensile strength of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978. 15(6): p. 99-103. 28. Itasca Consulting Group inc., 2002. PFC2D version 3.0. Minneapolis, MN: ICG. 29. Kemeny, J., Time-dependent drift degradation due to the progressive failure of rock bridges along discontinuities. International Journal of Rock Mechanics and Mining Sciences, 2005. 42(1): p. 35-46. 30. Kulatilake, P.H.S.W., Malama, B., Wang, J., Physical and particle flow modeling of jointed rock block behavior under uniaxial loading. International Journal of Rock Mechanics and Mining Sciences, 2001. 38(5): p. 641-657. 31. Lajtai, E.Z., A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics, 1971. 11: p. 129-156. 32. Lajtai, E.Z., Microscopic fracture processes in a granite. Rock Mechanics and Rock Engineering, 1998. 31(4): p. 237-250. 33. Lajtai, E.Z., Brittle fracture in compression. International Journal of Fracture, 1974. 10(4): p. 525-536. 34. Moon, T., Nakagawa, M., Berger, J., Calculation of fracture toughtness by using discrete element method, 7th ASCE Engineering Mechanics Conference. 2004: University of Delaware Newark, De. 35. Moon, T.N., M., Berger, J., Measurement of fracture toughness using the distinct element method. International Journal of Rock Mechanics and Mining Sciences, 2007. 44(3): p. 449-456. 36. Ouchterlony, F., Suggested methods for determining the fracture toughness of rock. International Journal of Rock Mechanics and Mining Sciences, 1988. 25(2): p. 71-96. 37. Potyondy D.O., C.P.A., A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 2004. 41(8): p. 1329-1364. 38. Reyes, O.M., Experimental study and analytical modelling of compressive fracture in brittle materials, Ph.D. Dissertation, Department of Civil Engineering. 1991, Massachusetts Institute of Technology: Boston. 39. Ueda, Y., Ikeda, K., Yao, T., Aoki, M., Yoshie, T., Shirakura T., Brittle Fracture Initiation Characteristics Under Biaxial Loading. Fracture, 1977. 2(6). p. 173-182. 40. Vesga, L.F., Vallejo, L. E., Lobo-Guerrero, S., DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Mechanics of Cohesive-frictional Materials. 32(11): p. 1405-1415. 41. Wang, Y.C., Yin, X.C., Ke, F.J., Xia, M.F., Peng, K.Y., Numerical simulation of rock failure and earthquake process on mesoscopic scale. Pure and Applied Geophysics, 2000. 157(11): p. 1905-1928. 42. Wen, Z., Gorelik, M., Chudnovsky, A., Dudley II, J.W. , Shlyapobersky, J., Observation and characterization of crack growth in porous rocks. Rock mechanics : tools and techniques : Proceedings of the 2nd North American Rock Mechanics Symposium, NARMS '96, a regional conference of ISRM, Montréal, Québec, Canada, 1996. p. 1269-1277. 43. Westergraard, H.M., Bearing Pressure and Cracks. Journal of Applied Mechanics, 1939. 6: p. A49-A53. 44. Wong, N.Y., Crack coalescence in molded gypsum and carrara marble, Ph.D. Dissertation, Department of Civil Engineering. 2008, Massachusetts Institute of Technology: Boston. 45. Yarema, S.Y., Krestin G. S., Determination of the modulus of cohesion of brittle materials by compressive tests on disc specimens containing cracks. Materials Science, 1967. 2(1): p. 1 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74143 | - |
| dc.description.abstract | 岩體內所存在之不連續面可以視為岩體中的預裂隙,對於岩體強度有很大的影響。若能掌握並預測在不同應力條件下,裂隙的發展趨勢,對於岩石邊坡穩定工程有相當大的幫助。因含預裂隙之天然岩材不易取得、岩材組成具變異性、實驗條件控制不易且裂隙觀察困難等,故本研究採用分離元素法為基礎之PFC3D軟體進行模擬及分析,相較於連續體分析模式,分離元素法具有元素可分離的優勢,符合本研究對於裂隙延伸行為探討之需求。
本研究包含兩個部分,第一部分係以數值模擬與實驗室基本力學實驗所得之結果進行比對與驗證,確認微觀參數與數值模型之合理性。首先模擬貫穿巴西圓盤試驗(Central cracked Brazilian disk test, CCBD),驗證以平滑節理模式模擬預裂隙,可以準確的模擬裂隙的產生及破壞時的作用力。進一步,分析雙預裂隙單軸拉伸試驗,探討不同預裂隙幾何配置下,對於裂隙延伸行為之影響。分析結果發現,兩預裂隙傾角為負值時,裂隙容易發展並聚結,而裂隙的聚結是導致岩體強度降低的一個重要因素。最低的張力強度,常發生在預裂隙傾角-30度至10度這個區間。第二部份為案例分析,案例為位於台二線83.6K處之岩坡,其破壞除了由於兩相交節理面導致岩楔滑落之外,在破壞面頂端發現有岩橋貫穿的痕跡。此狀況與上述雙預裂隙受到拉應力下,裂隙延伸導致破壞的情況相似。利用攝影測量方式進行節理判斷,並建立一含雙預裂隙之岩坡模型,進而探討不同預裂隙傾角下,岩體強度之變化。分析結果可繪製出一強度倒U形曲線,岩橋強度落於曲線上半部為安全區域,曲線下半部為破壞區域。當預裂隙傾角介於-20度到20度之間時,維持穩定所需之岩橋強度最高,表示此時的預裂隙位態最不利。 | zh_TW |
| dc.description.abstract | The discontinuities in the rock mass can be regarded as pre-cracks, which have a great influence on the strength of the rock mass. If we can predict and control the propagation of fracture under different stress conditions. It will have great help to the rock slope stabilization. Because of the natural rock materials with pre-cracks are difficult to obtain, the experimental conditions are difficult to control and the fractures are difficult to observe. Therefore, PFC3D based on the distinct element method is used for simulation and analysis. Distinct element method has the advantage of separable elements, which is the advantage of study fracture propagation.
This study consists of two parts. The first part is to compare and verify the results obtained by numerical simulation and laboratory experiments in order to confirm the rationality of microscopic parameters and numerical models. The Central cracked Brazilian disk test (CCBD) was simulated to verify the pre-cracks which simulated in smooth-joint mode. It can accurately simulate the failure force and fracture. Then, the double pre-crack uniaxial tensile test was analyzed to investigate the effect of different pre-crack geometry on the fracture propagation. The analysis results show that when the angle is negative, the fractures are easy to propagation and coalescence. The coalescence of the fracture has a great impact on the strength of rock mass. The lowest tensile strength often occurs in the interval of pre-crack inclination -30 degrees to 10 degrees. The second part is a case study. The case is a rock slope located at 83.6K on the Provincial Highway No. 2. The damage is not only due to the slip of the rock wedge due to the two intersecting joints, but also traces of rock bridge penetration at the top of the failure surface. This condition is similar to the case where the double pre-crack rock mass is subjected to tensile stress and the fracture propagation causes damage. A rock slope model with double pre-cracks is established to investigate the variation of rock mass strength under different pre-crack dip angles. The analysis results can draw an inverted U-shaped curve. If the strength of the rock bridge falls in the upper half of the curve, it will not be destroyed. It called the safety zone. On the contrast, the lower half of the curve is the failure zone. When the pre-crack dip angle is between -20 degrees and 20 degrees, the strength of the rock bridge required to maintain stability is the highest, indicating that the pre-crack at this position is the most unfavorable. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:21:41Z (GMT). No. of bitstreams: 1 ntu-108-R06521124-1.pdf: 7555466 bytes, checksum: ca46276f2866dcfe6956ded394a87a3d (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 符號表 V 目錄 VII 表目錄 X 圖目錄 XI 第一章 導論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 2 第二章 文獻回顧 4 2.1 岩石材料破裂行為 4 2.1.1 單軸應力狀態之岩石破裂力學實驗 4 2.1.2 雙軸應力狀態之岩石破裂力學實驗 9 2.1.3 人造岩石之力學性質 11 2.2 分析軟體-PFC3D程式概述 12 2.2.1 基本假設及運算原理 12 2.2.2 顆粒接觸模式 13 2.2.3 微觀參數之選取 18 2.2.4 分離元素法於破裂行為之應用 19 2.3 人造岩石力學實驗 22 2.3.1 人造岩石材料選取 22 2.3.2 實驗方法與設備 22 2.3.3 實驗成果 23 第三章 數值模型之建立 27 3.1 建模流程 27 3.2 物理模型比對驗證 28 3.2.1 單壓試驗 28 3.2.2 間接張力試驗 30 3.3 破裂力學實驗模擬與驗證 31 3.3.1 貫穿巴西圓盤試驗(Central cracked Brazilian disk test) 32 3.3.2 不同預裂隙傾角之比較 36 第四章 單軸拉應力下雙預裂隙延伸破壞分析 40 4.1 試體與裂隙之生成 40 4.2 單軸拉應力下雙預裂隙角度對裂隙延伸行為之影響 41 4.2.1 0度雙預裂隙破裂行為 45 4.2.2 20度雙預裂隙破裂行為 47 4.2.3 45度雙預裂隙破裂行為 50 4.2.4 -45度雙預裂隙破裂行為 52 4.3 預裂隙間距之影響 55 4.4 預裂隙連續性之影響 58 4.5 結果與討論 61 第五章 現地案例應用 62 5.1 案例位置及地質概況 62 5.2 案例攝影測量成果 63 5.2.1 節理判斷 64 5.2.2 投影圓分析 64 5.3 點荷重試驗 65 5.3.1 試體準備及試驗規劃 66 5.3.2 試驗設備及試驗步驟 68 5.3.3 試驗結果與討論 69 5.4 邊坡模型之建置 72 5.4.1 試驗方法 72 5.4.2 預裂隙傾角之影響 73 5.4.3 預裂隙連續性之影響 77 5.4.4 結果與討論 78 第六章 結論與建議 79 6.1 結論 79 6.2 建議 80 第七章 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 破裂力學 | zh_TW |
| dc.subject | 分離元素法 | zh_TW |
| dc.subject | Particle flow code 3D (PFC3D) | zh_TW |
| dc.subject | 裂隙延伸 | zh_TW |
| dc.subject | 岩楔破壞 | zh_TW |
| dc.subject | fracture propagation | en |
| dc.subject | fracture mechanics | en |
| dc.subject | wedge failure | en |
| dc.subject | distinct element method | en |
| dc.subject | Particle flow code 3D (PFC3D) | en |
| dc.title | 裂隙延伸於岩楔穩定性之影響-以分離元素法探討 | zh_TW |
| dc.title | Influence of Fracture Propagation on Rock Wedge Stability by Using Distinct Element Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 翁孟嘉 | |
| dc.contributor.oralexamcommittee | 王泰典,李宏輝 | |
| dc.subject.keyword | 破裂力學,分離元素法,Particle flow code 3D (PFC3D),裂隙延伸,岩楔破壞, | zh_TW |
| dc.subject.keyword | fracture mechanics,distinct element method,Particle flow code 3D (PFC3D),fracture propagation,wedge failure, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201903388 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 7.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
