請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7413
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林水龍 | zh_TW |
dc.contributor.author | 蘇彥昌 | zh_TW |
dc.contributor.author | Yen-Chang Su | en |
dc.date.accessioned | 2021-05-19T17:43:09Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2019-03-11 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Lopes JA, and Jorge S. The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin Kidney J. 2013;6(1):8-14.
2. Lewington AJ, Cerda J, and Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 2013;84(3):457-67. 3. de Geus HR, Betjes MG, and Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5(2):102-8. 4. Liu X, Guan Y, Xu S, Li Q, Sun Y, Han R, et al. Early Predictors of Acute Kidney Injury: A Narrative Review. Kidney Blood Press Res. 2016;41(5):680-700. 5. Basile DP, Anderson MD, and Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2(2):1303-53. 6. Bonventre JV, and Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210-21. 7. Malek M, and Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev. 2015;4(2):20-7. 8. Banaei S. Novel role of microRNAs in renal ischemia reperfusion injury. Ren Fail. 2015;37(7):1073-9. 9. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol. 2006;17(6):1503-20. 10. Lieberthal W, and Nigam SK. Acute renal failure. I. Relative importance of proximal vs. distal tubular injury. Am J Physiol. 1998;275(5 Pt 2):F623-31. 11. Ishimoto Y, and Inagi R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dial Transplant. 2016;31(7):1062-9. 12. Tran M, Tam D, Bardia A, Bhasin M, Rowe GC, Kher A, et al. PGC-1alpha promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest. 2011;121(10):4003-14. 13. Hall AM. Maintaining mitochondrial morphology in AKI: looks matter. J Am Soc Nephrol. 2013;24(8):1185-7. 14. Jiang X, and Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem. 2004;73:87-106. 15. Ding WX, and Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547-64. 16. Agarwal A, Dong Z, Harris R, Murray P, Parikh SM, Rosner MH, et al. Cellular and Molecular Mechanisms of AKI. J Am Soc Nephrol. 2016;27(5):1288-99. 17. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008;2(3):284-91. 18. Liu KD. Molecular mechanisms of recovery from acute renal failure. Crit Care Med. 2003;31(8 Suppl):S572-81. 19. Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol. 2003;14 Suppl 1:S55-61. 20. Humphreys BD, Cantaluppi V, Portilla D, Singbartl K, Yang L, Rosner MH, et al. Targeting Endogenous Repair Pathways after AKI. J Am Soc Nephrol. 2016;27(4):990-8. 21. Lin JJ, Cybulsky AV, Goodyer PR, Fine RN, and Kaskel FJ. Insulin-like growth factor-1 enhances epidermal growth factor receptor activation and renal tubular cell regeneration in postischemic acute renal failure. J Lab Clin Med. 1995;125(6):724-33. 22. Liu KD, and Brakeman PR. Renal repair and recovery. Crit Care Med. 2008;36(4 Suppl):S187-92. 23. Liu Y. Hepatocyte growth factor and the kidney. Curr Opin Nephrol Hypertens. 2002;11(1):23-30. 24. Flaquer M, Romagnani P, and Cruzado JM. [Growth factors and renal regeneration]. Nefrologia. 2010;30(4):385-93. 25. Chang-Panesso M, and Humphreys BD. Cellular plasticity in kidney injury and repair. Nat Rev Nephrol. 2017;13(1):39-46. 26. Hsu RK, and Hsu CY. The Role of Acute Kidney Injury in Chronic Kidney Disease. Semin Nephrol. 2016;36(4):283-92. 27. Ramesh G, and Ranganathan P. Mouse models and methods for studying human disease, acute kidney injury (AKI). Methods Mol Biol. 2014;1194:421-36. 28. Singh AP, Junemann A, Muthuraman A, Jaggi AS, Singh N, Grover K, et al. Animal models of acute renal failure. Pharmacol Rep. 2012;64(1):31-44. 29. Wei Q, and Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol. 2012;303(11):F1487-94. 30. Yang G, Nowsheen S, Aziz K, and Georgakilas AG. Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacol Ther. 2013;139(3):392-404. 31. Love RR, and Koroltchouk V. Tamoxifen therapy in breast cancer control worldwide. Bull World Health Organ. 1993;71(6):795-803. 32. Love RR. Tamoxifen therapy in primary breast cancer: biology, efficacy, and side effects. J Clin Oncol. 1989;7(6):803-15. 33. Rangel LB, Taraba JL, Frei CR, Smith L, Rodriguez G, and Kuhn JG. Pharmacogenomic diversity of tamoxifen metabolites and estrogen receptor genes in Hispanics and non-Hispanic whites with breast cancer. Breast Cancer Res Treat. 2014;148(3):571-80. 34. Moreira PI, Custodio JB, Oliveira CR, and Santos MS. Hydroxytamoxifen protects against oxidative stress in brain mitochondria. Biochem Pharmacol. 2004;68(1):195-204. 35. Wong MM, Guo C, and Zhang J. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. Am J Clin Exp Urol. 2014;2(3):169-87. 36. Shang Y, Hu X, DiRenzo J, Lazar MA, and Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell. 2000;103(6):843-52. 37. Ali S, Rasool M, Chaoudhry H, P NP, Jha P, Hafiz A, et al. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation. 2016;12(3):135-9. 38. Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M, et al. Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature. 2008;456(7222):663-6. 39. Corriden R, Hollands A, Olson J, Derieux J, Lopez J, Chang JT, et al. Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide. Nat Commun. 2015;6:8369. 40. Paul R, Silve S, De Nys N, Dupuy PH, Bouteiller CL, Rosenfeld J, et al. Both the immunosuppressant SR31747 and the antiestrogen tamoxifen bind to an emopamil-insensitive site of mammalian Delta8-Delta7 sterol isomerase. J Pharmacol Exp Ther. 1998;285(3):1296-302. 41. Kim D, Lee AS, Jung YJ, Yang KH, Lee S, Park SK, et al. Tamoxifen ameliorates renal tubulointerstitial fibrosis by modulation of estrogen receptor alpha-mediated transforming growth factor-beta1/Smad signaling pathway. Nephrol Dial Transplant. 2014;29(11):2043-53. 42. Delle H, Rocha JR, Cavaglieri RC, Vieira JM, Jr., Malheiros DM, and Noronha IL. Antifibrotic effect of tamoxifen in a model of progressive renal disease. J Am Soc Nephrol. 2012;23(1):37-48. 43. van der Bilt FE, Hendriksz TR, van der Meijden WA, Brilman LG, and van Bommel EF. Outcome in patients with idiopathic retroperitoneal fibrosis treated with corticosteroid or tamoxifen monotherapy. Clin Kidney J. 2016;9(2):184-91. 44. Korte MR, Fieren MW, Sampimon DE, Lingsma HF, Weimar W, Betjes MG, et al. Tamoxifen is associated with lower mortality of encapsulating peritoneal sclerosis: results of the Dutch Multicentre EPS Study. Nephrol Dial Transplant. 2011;26(2):691-7. 45. Gwira JA, Wei F, Ishibe S, Ueland JM, Barasch J, and Cantley LG. Expression of neutrophil gelatinase-associated lipocalin regulates epithelial morphogenesis in vitro. J Biol Chem. 2005;280(9):7875-82. 46. Firu SG, Streba CT, Firu D, Tache DE, and Rogoveanu I. Neutrophil Gelatinase Associated Lipocalin (NGAL) - a biomarker of renal dysfunction in patients with liver cirrhosis: Do we have enough proof? J Med Life. 2015;8 Spec Issue:15-20. 47. Kjeldsen L, Johnsen AH, Sengelov H, and Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425-32. 48. Kjeldsen L, Bainton DF, Sengelov H, and Borregaard N. Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood. 1994;83(3):799-807. 49. Chakraborty S, Kaur S, Guha S, and Batra SK. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta. 2012;1826(1):129-69. 50. Cai L, Rubin J, Han W, Venge P, and Xu S. The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol. 2010;5(12):2229-35. 51. Martensson J, and Bellomo R. The rise and fall of NGAL in acute kidney injury. Blood Purif. 2014;37(4):304-10. 52. Glassford NJ, Schneider AG, Xu S, Eastwood GM, Young H, Peck L, et al. The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury. Intensive Care Med. 2013;39(10):1714-24. 53. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. Journal of Clinical Investigation. 2005;115(3):610-21. 54. Candido S, Abrams SL, Steelman LS, Lertpiriyapong K, Fitzgerald TL, Martelli AM, et al. Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. Biochim Biophys Acta. 2016;1863(3):438-48. 55. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18(2):407-13. 56. Devireddy LR, Gazin C, Zhu X, and Green MR. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 2005;123(7):1293-305. 57. Filiopoulos V, Biblaki D, and Vlassopoulos D. Neutrophil gelatinase-associated lipocalin (NGAL): a promising biomarker of contrast-induced nephropathy after computed tomography. Ren Fail. 2014;36(6):979-86. 58. Silberstein JL, Sprenkle PC, Su D, Power NE, Tarin TV, Ezell P, et al. Neutrophil gelatinase-associated lipocalin (NGAL) levels in response to unilateral renal ischaemia in a novel pilot two-kidney porcine model. BJU Int. 2013;112(4):517-25. 59. Carlson M, Raab Y, Seveus L, Xu S, Hallgren R, and Venge P. Human neutrophil lipocalin is a unique marker of neutrophil inflammation in ulcerative colitis and proctitis. Gut. 2002;50(4):501-6. 60. Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, and Friedl A. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat. 2008;108(3):389-97. 61. Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, and Kjeldsen L. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut. 1996;38(3):414-20. 62. Roudkenar MH, Kuwahara Y, Baba T, Roushandeh AM, Ebishima S, Abe S, et al. Oxidative stress induced lipocalin 2 gene expression: addressing its expression under the harmful conditions. J Radiat Res. 2007;48(1):39-44. 63. Devarajan P. Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomark Med. 2010;4(2):265-80. 64. Candido S, Maestro R, Polesel J, Catania A, Maira F, Signorelli SS, et al. Roles of neutrophil gelatinase-associated lipocalin (NGAL) in human cancer. Oncotarget. 2014;5(6):1576-94. 65. Paragas N, Qiu A, Hollmen M, Nickolas TL, Devarajan P, and Barasch J. NGAL-Siderocalin in kidney disease. Biochim Biophys Acta. 2012;1823(9):1451-8. 66. Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, and Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63(5):1714-24. 67. Devarajan P, Mishra J, Supavekin S, Patterson LT, and Steven Potter S. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Molecular Genetics and Metabolism. 2003;80(4):365-76. 68. Mishra J. Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. Journal of the American Society of Nephrology. 2003;14(10):2534-43. 69. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, and Devarajan P. Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol. 2004;24(3):307-15. 70. An S, Zang X, Yuan W, Zhuge Y, and Yu Q. Neutrophil gelatinase-associated lipocalin (NGAL) may play a protective role against rats ischemia/reperfusion renal injury via inhibiting tubular epithelial cell apoptosis. Ren Fail. 2013;35(1):143-9. 71. Gong L, Yu H, ZhuGe Y, and Yu Q. Neutrophil gelatinase-associated lipocalin protects renal tubular epithelial cell in ischemic/reperfusion injury rats via apoptosis-regulating proteins. Ren Fail. 2012;34(6):777-83. 72. Zang XJ, An SX, Feng Z, Xia YP, Song Y, and Yu Q. In vivo mechanism study of NGAL in rat renal ischemia-reperfusion injury. Genet Mol Res. 2014;13(4):8740-8. 73. Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15(12):3073-82. 74. Zang X, Zheng F, Hong HJ, Jiang Y, Song Y, and Xia Y. Neutrophil gelatinase-associated lipocalin protects renal tubular epithelial cells in hypoxia-reperfusion by reducing apoptosis. Int Urol Nephrol. 2014;46(8):1673-9. 75. Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant. 2009;24(11):3265-8. 76. Ichimura T, Hung CC, Yang SA, Stevens JL, and Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552-63. 77. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, and Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol. 2006;290(2):F517-29. 78. Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci. 2008;101(1):159-70. 79. Han WK, Bailly V, Abichandani R, Thadhani R, and Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237-44. 80. Vaidya VS, Ozer JS, Dieterle F, Collings FB, Ramirez V, Troth S, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol. 2010;28(5):478-85. 81. Vaidya VS, Waikar SS, Ferguson MA, Collings FB, Sunderland K, Gioules C, et al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci. 2008;1(3):200-8. 82. van Timmeren MM, Bakker SJ, Vaidya VS, Bailly V, Schuurs TA, Damman J, et al. Tubular kidney injury molecule-1 in protein-overload nephropathy. Am J Physiol Renal Physiol. 2006;291(2):F456-64. 83. Sabbisetti VS, Ito K, Wang C, Yang L, Mefferd SC, and Bonventre JV. Novel assays for detection of urinary KIM-1 in mouse models of kidney injury. Toxicol Sci. 2013;131(1):13-25. 84. Ichimura T, Brooks CR, and Bonventre JV. Kim-1/Tim-1 and immune cells: shifting sands. Kidney Int. 2012;81(9):809-11. 85. Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY, Hsiao LL, et al. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest. 2015;125(4):1620-36. 86. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, and Bonventre JV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118(5):1657-68. 87. McIlroy DR, Wagener G, and Lee HT. Biomarkers of acute kidney injury: an evolving domain. Anesthesiology. 2010;112(4):998-1004. 88. Palin NK, Savikko J, Pasternack A, Rintala JM, Kalra B, Mistry S, et al. Activin inhibition limits early innate immune response in rat kidney allografts-a pilot study. Transpl Int. 2017;30(1):96-107. 89. Cardoso CM, Custodio JB, Almeida LM, and Moreno AJ. Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency. Toxicol Appl Pharmacol. 2001;176(3):145-52. 90. Lien EA, Solheim E, and Ueland PM. Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res. 1991;51(18):4837-44. 91. Robinson SP, Langan-Fahey SM, Johnson DA, and Jordan VC. Metabolites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab Dispos. 1991;19(1):36-43. 92. Maccarrone M, Fantini C, Ranalli M, Melino G, and Agro AF. Activation of nitric oxide synthase is involved in tamoxifen-induced apoptosis of human erythroleukemia K562 cells. FEBS Lett. 1998;434(3):421-4. 93. Nazarewicz RR, Zenebe WJ, Parihar A, Larson SK, Alidema E, Choi J, et al. Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. Cancer Res. 2007;67(3):1282-90. 94. Ghafourifar P, and Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997;418(3):291-6. 95. Ghafourifar P, Schenk U, Klein SD, and Richter C. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem. 1999;274(44):31185-8. 96. Charlton JR, Portilla D, and Okusa MD. A basic science view of acute kidney injury biomarkers. Nephrol Dial Transplant. 2014;29(7):1301-11. 97. Meyer K, Lee JS, Dyck PA, Cao WQ, Rao MS, Thorgeirsson SS, et al. Molecular profiling of hepatocellular carcinomas developing spontaneously in acyl-CoA oxidase deficient mice: comparison with liver tumors induced in wild-type mice by a peroxisome proliferator and a genotoxic carcinogen. Carcinogenesis. 2003;24(5):975-84. 98. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487-98. 99. Lv Z, Xu LY, Shen ZY, Zhang FR, Xu XE, and Li EM. Overexpression of neutrophil gelatinase-associated lipocalin and its receptor in colorectal carcinoma: Significant correlation with cell differentiation and tumour invasion. Oncol Lett. 2010;1(1):103-8. 100. Sobecki M, Mrouj K, Colinge J, Gerbe F, Jay P, Krasinska L, et al. Cell-Cycle Regulation Accounts for Variability in Ki-67 Expression Levels. Cancer Res. 2017;77(10):2722-34. 101. Yang L, Besschetnova TY, Brooks CR, Shah JV, and Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535-43, 1p following 143. 102. Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37-46. 103. Wee P, and Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel). 2017;9(5). 104. Karihaloo A, O'Rourke DA, Nickel C, Spokes K, and Cantley LG. Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J Biol Chem. 2001;276(12):9166-73. 105. Zhang Z, and Cai CX. Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway. Mol Cell Biochem. 2016;416(1-2):109-16. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7413 | - |
dc.description.abstract | 急性腎損傷(Acute kidney injury, AKI)被定義為在數小時或數天內的急性腎臟功能下降,在醫療日益發達的現代,AKI的發生率以及致死率依舊居高不下,且伴隨著醫療的高支出,目前對於AKI還沒有有效的藥物能進行治療或預防,因此極需找出針對AKI有效的治療以及預防方法。
Tamoxifen (TAM)是常見的乳癌用藥,除了用於乳癌治療上,TAM也被用來活化基因轉殖鼠Cre重組酶的活性,我們發現給予C57BL/6J小鼠TAM後可以降低缺血再灌流所造成急性腎損傷的損傷程度,我們在小鼠8週大時將左側腎臟切除,並於兩週後進行腎臟缺血再灌流手術(IRI),發現以管餵的方式在缺血再灌流前連續給予三天TAM後可以降低老鼠的腎損傷程度,給予TAM的組別血液中BUN及creatinine較低,並且在Periodic Acid-Schiff (PAS)染色的結果中腎臟損傷程度也較低,在Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL)染色的結果上,我們也發現TAM可以降低缺血再灌流後細胞凋亡的數量,透過酵素結合免疫分析法(Enzyme-Linked ImmunoSorbent Assay;ELISA),我們發現在IRI後24小時,Neutrophil gelatinase-associated lipocalin (NGAL)的表現在給予olive oil與TAM的組別間沒有差異,但在48小時則是給予TAM的組別顯著低於給予olive oil的組別,Kidney injury molecule (KIM-1) 的表現不論在IRI後24小時或是48小時,皆是給予TAM的組別表現較低。此外,單純連續管餵TAM三天後且未進行IRI的小鼠血液中NGAL蛋白以及腎臟組織中的NGAL基因表現皆顯著上升,腎臟組織中的KIM-1基因表現也有增加,查詢相關文獻發現目前有部分研究顯示NGAL對於急性腎損傷有保護的作用,也有研究探討過KIM-1有助於急性腎損傷後的修復。我們進一步發現單純連續給予TAM且未進行IRI的小鼠在肝臟以及腎小管細胞中NGAL基因表現會增加,而嗜中性白血球NGAL的基因表現則沒有改變,此外buffy coat以及腎小管細胞的KIM-1基因表現也是增加的。另外我們也發現給予TAM可使IRI後腎臟中促發炎相關激素Tnfa、Il1b基因表現下降,而Egf基因以及粒線體功能相關基因Ppargc1a表現增加。除此之外,給予TAM後也在IRI前增加了腎臟中ki67基因的表現。 總結來說,小鼠術前三天連續給予TAM後降低了缺血再灌流的急性腎損傷,且單純給予TAM且尚未進行缺血再灌流手術就會使小鼠血液、腎臟及肝臟中的NGAL增加,未來須進一步透過NGAL基因剔除的小鼠進行實驗來證實TAM是否藉由NGAL的增加來減低急性腎損傷的嚴重程度,另外關於給予TAM後會使缺血再灌流手術小鼠腎臟粒線體功能相關基因Ppargc1a顯著增加的部分,也將進一步研究TAM是否也會藉由影響粒線體的功能來改善急性腎損傷。 | zh_TW |
dc.description.abstract | Acute kidney injury (AKI) is defined as a sudden renal function lost within a few hours or a few days. In recent days, the mortality and the incidence of AKI are still high and contribute to a lot of burden of medical costs. There is no promising drug for AKI treatment or prevention currently. Thus, it is imperative to find effective therapeutics for AKI.
Tamoxifen (TAM) is a medication used to treat breast cancer. Besides the anticancer effect, tamoxifen used to induce Cre recombinases for gene activation in mice. Here we demonstrated that TAM attenuated renal ischemia reperfusion injury in C57BL/6J mice. We performed right nephrectomy on 8-week-old C57BL/6J male mice and induced the ischemia-reperfusion injury in the left kidney 2 weeks later. These mice treated with TAM by oral gavage daily for three consecutive days before ischemia-reperfusion injury had lower injury severity. TAM treatment lowered plasma BUN and creatinine. Periodic Acid-Schiff (PAS) stain also showed that TAM treated mice had lower renal injury level. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining showed that TAM treated mice had lower apoptotic cells expression in renal tissues after ischemia-reperfusion injury. According to the results of Enzyme-Linked ImmunoSorbent Assay (ELISA), we found that plasma Neutrophil gelatinase-associated lipocalin (NGAL) expression had no difference between TAM treatment and olive oil treatment in 24 hours after ischemia-reperfusion injury. However, TAM treatment had lower plasma NGAL expression in 48 hours after ischemia-reperfusion injury. TAM treatment had lower expression of Kidney injury molecule (KIM-1) in both 24 and 48 hours after ischemia-reperfusion injury. In addition, our data showed that the plasma level of NGAL and gene expression of NGAL and KIM-1 in whole kidney of TAM treated mice were both elevated before ischemia-reperfusion injury, which were the plausible protective effect of TAM. Because several researchers have discussed the effect of NGAL on ischemia-reperfusion injury protection, and the role of KIM-1 signaling in renal tubule cells repair has been studied as well. According to the results, liver and renal tubule cells but not neutrophil increased NGAL secretion after TAM treatment. Moreover, buffy coat and renel tubule cells increased KIM-1 secretion. On the other hand, TAM treatment reduced inflammatory cytokines Tnfa、Il1b gene expression while induced Egf and mitochondria function related gene Ppargc1a expression in whole kidney after ischemia-reperfusion injury. TAM treatment also increased ki67 gene expression in whole kidney before ischemia-repurfusion injury. In conclusion, TAM treatment lowered acute renal ischemia reperfusion injury. On the other hand, administration of TAM without renal injury increased the NGAL plasma level and its expression in kidney and liver. In the future study, we will use NGAL gene knockout mice to confirm whether the renoprotective effect of TAM is contributed from the increase of NGAL for acute kidney injury. Regarding increased expression of mitochondria function related gene Ppargc1a after TAM treatment, we will also arrange further study to clarify if TAM has effect on mitochondira to reduce AKI. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:43:09Z (GMT). No. of bitstreams: 1 ntu-107-R05441011-1.pdf: 3292683 bytes, checksum: ffa450695f07e063f6ac4c2034ed41ee (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 謝辭………………………………………………………………………………………i
摘要……………………………………………………………………………………ii Abstract…………………………………………………………………………………iv 目錄…………………………………………………………………………...……......vii 圖目錄…………………………………………………………………………………..x 表目錄………………………………………………………………………………......xi 第一章 緒論 1 1.1 腎臟與急性腎損傷 1 1.1.1 腎臟簡介 1 1.1.2 急性腎損傷(Acute Kidney Injury, AKI) 1 1.1.3 急性腎損傷病理機制 3 1.1.4 缺血再灌流損傷(Ischemia Reperfusion Injury) 3 1.1.5 粒線體於急性腎損傷的角色 5 1.1.6 急性腎損傷的自我修復 5 1.1.7 急性腎損傷動物模式 6 1.2 Tamoxifen 6 1.2.1 Tamoxifen簡介 6 1.2.2 TAM與腎臟疾病 7 1.3 嗜中性白血球明膠酶相關性脂質運載蛋白(neutrophil-gelatinase-associated lipocalin, NGAL) 8 1.3.1 NGAL結構與功能 8 1.3.2 NGAL與腎臟疾病 9 1.3.3 NGAL對急性腎損傷的保護作用 9 1.4 腎損傷分子Kidney injury molecule-1 (KIM-1) 10 1.5 實驗目的 11 第二章 材料與方法 12 2.1 材料 12 2.1.1 實驗動物 12 2.1.2 藥品與試劑 12 2.1.3 溶液 16 2.1.4 抗體 18 2.1.5 試劑盒 19 2.2 方法 20 2.2.1 小鼠基因型鑑定 20 2.2.1.1 DNA萃取 20 2.2.1.2 聚合酶連鎖反應(polymerase chain reaction;PCR) 20 2.2.2 缺血再灌流模型 20 2.2.3 檢體採集 21 2.2.3.1 血漿的採集與檢測 21 2.2.3.2 腎臟組織的採集 21 2.2.3.3 血液中嗜中性白血球的分離 22 2.2.3.4 血液中buffy coat的分離 22 2.2.3.5 腎臟腎小管細胞的分離 22 2.2.4 Periodic Acid-Schiff (PAS)染色 22 2.2.5 免疫螢光染色(immunofluorescence ; IF) 23 2.2.6 TUNEL分析(Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, TUNEL assays) 23 2.2.7 RNA萃取 23 2.2.8 反轉錄(reverse transcription)及即時聚合酶連鎖反應(real-time polymerase chain reaction;real-time PCR) 24 2.2.9 蛋白質萃取及分裝 24 2.2.10 西方墨點法(Western blot) 25 2.2.11 酵素結合免疫分析法(Enzyme-Linked ImmunoSorbent Assay;ELISA) 26 2.2.12 統計分析 26 第三章 實驗結果 27 3.1 連續給予TAM三天後可以降低IRI在第二天及第七天的腎損傷 27 3.2 TAM劑量對於急性腎損傷的保護效果 27 3.3 連續管餵三天TAM以及IRI後NGAL以及KIM-1的表現 28 3.4 給予TAM後可以降低bilateral IRI後第二天的腎損傷 28 3.5 給予TAM後NGAL以及KIM-1來源 29 3.6 給予TAM及IRI後第二天腎小管細胞的凋亡與增生情形 29 3.7 給予TAM及IRI後第二天對粒線體功能相關基因表現的影響 30 3.8 給予TAM及IRI後促發炎細胞激素及生長因子的表現 31 第四章 討論 32 4.1 管餵TAM可以降低IRI的損傷 32 4.2 TAM劑量對於急性腎損傷的保護效果 33 4.3 管餵TAM後增加NGAL及KIM-1之表現及來源 34 4.4 Nephrectomy 後增加NGAL的表現 35 4.5 管餵TAM後可以減少IRI後細胞凋亡 35 4.6 給予TAM後對於粒線體功能的影響 37 4.7 給予TAM可以抑制IRI後促發炎激素並增加生長因子表現 38 4.8 未來可進行的相關實驗 38 第五章 結論與未來展望 39 圖表 40 圖一、uIRI前給予TAM可減低急性腎損傷的嚴重程度 40 圖二、uIRI前給予TAM可減少腎小管的損傷程度 42 圖三、不同TAM劑量對於急性腎損傷保護效果的差異 43 圖四、給予TAM及IRI後NGAL及KIM-1的表現 44 圖五、bIRI前給予TAM可減低急性腎損傷的嚴重程度 46 圖六、給予TAM後NGAL及KIM-1的來源 48 圖七、uIRI前給予TAM可減少腎小管細胞的凋亡 50 圖八、給予TAM於uIRI後第二天細胞凋亡相關蛋白的影響 51 圖九、給予TAM對uIRI後第二天腎小管細胞增生的影響 52 圖十、給予TAM對uIRI後第二天Ki67的蛋白以及基因表現的影響 53 圖十一、給予TAM對uIRI後促發炎細胞激素及生長因子基因表現的影響 55 圖十二、給予TAM對IRI後對粒線體功能相關基因表現的影響 57 附錄 63 第六章 參考文獻 66 | - |
dc.language.iso | zh_TW | - |
dc.title | Tamoxifen對缺血再灌流的急性腎損傷之影響 | zh_TW |
dc.title | The effect of tamoxifen on the ischemia-reperfusion acute kidney injury | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 周鈺翔;賴俊夫 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | 急性腎損傷,缺血再灌流,他莫昔芬,嗜中性白血球明膠?相關性脂質運載蛋白,腎損傷分子,粒線體, | zh_TW |
dc.subject.keyword | Acute kidney injury,ischemia-reperfusion injury,Tamoxifen,Neutrophil gelatinase-associated lipocalin,Kidney injury molecule,mitochondria, | en |
dc.relation.page | 73 | - |
dc.identifier.doi | 10.6342/NTU201804224 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-10-18 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 生理學研究所 | - |
dc.date.embargo-lift | 2024-03-11 | - |
顯示於系所單位: | 生理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。