Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志
dc.contributor.authorWei-An Chenen
dc.contributor.author陳維安zh_TW
dc.date.accessioned2021-06-17T08:21:11Z-
dc.date.available2024-08-19
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citationBradley, A., Evans, M., Kaufman, M.H., and Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255-256.
De Coppi, P., Bartsch, G., Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., et al. (2007a). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology 25, 100-106.
De Coppi, P., Callegari, A., Chiavegato, A., Gasparotto, L., Piccoli, M., Taiani, J., Pozzobon, M., Boldrin, L., Okabe, M., and Cozzi, E. (2007b). Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. The Journal of Urology 177, 369-376.
Eslaminejad, M.B., Jahangir, S., and Aghdami, N. (2011). Mesenchymal stem cells from murine amniotic fluid as a model for preclinical investigation. Archives of Iranian Medicine (AIM) 14, 96-103.
Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156.
Fox, N., Damjanov, I., Martinez-Hernandez, A., Knowles, B.B., and Solter, D. (1981). Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues. Developmental Biology 83, 391-398.
Friedenstein, A., Deriglasova, U., Kulagina, N., Panasuk, A., Rudakowa, S., Luria, E., and Ruadkow, I. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology 2, 83-92.
Gemmis, P.D., Lapucci, C., Bertelli, M., Tognetto, A., Fanin, E., Vettor, R., Pagano, C., Pandolfo, M., and Fabbri, A. (2006). A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells. Stem Cells and Development 15, 719-728.
Health, N.I.o. (2004). Stem cells: scientific progress and future research directions (University Press of the Pacific).
in't Anker, P.S., Scherjon, S.A., Kleijburg‐van der Keur, C., de Groot‐Swings, G.M., Claas, F.H., Fibbe, W.E., and Kanhai, H.H. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22, 1338-1345.
Kolambkar, Y.M., Peister, A., Soker, S., Atala, A., and Guldberg, R.E. (2007). Chondrogenic differentiation of amniotic fluid-derived stem cells. Journal of Molecular Histology 38, 405-413.
Kooreman, N.G., and Wu, J.C. (2010). Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging. Journal of the Royal Society Interface 7, S753-S763.
Li, T.D., Feng, G.H., Li, Y.F., Wang, M., Mao, J.J., Wang, J.Q., Li, X., Wang, X.P., Qu, B., Wang, L.Y., et al. (2017). Rat embryonic stem cells produce fertile offspring through tetraploid complementation. Proceedings of the National Academy of Sciences of the United States of America 114, 11974-11979.
Loukogeorgakis, S.P., and De Coppi, P. (2017). Concise Review: Amniotic fluid stem cells: the known, the unknown, and potential regenerative medicine applications. Stem Cells 35, 1663-1673.
Maraldi, T., Bertoni, L., Riccio, M., Zavatti, M., Carnevale, G., Resca, E., Guida, M., Beretti, F., La Sala, G.B., and De Pol, A. (2014). Human amniotic fluid stem cells: neural differentiation in vitro and in vivo. Cell and Tissue Research 357, 1-13.
Martin‐Rendon, E., Sweeney, D., Lu, F., Girdlestone, J., Navarrete, C., and Watt, S. (2008). 5‐Azacytidine‐treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sanguinis 95, 137-148.
Masui, S., Ohtsuka, S., Yagi, R., Takahashi, K., Ko, M.S., and Niwa, H. (2008). Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Developmental Biology 8, 45.
Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-642.
Moschidou, D., Mukherjee, S., Blundell, M.P., Drews, K., Jones, G.N., Abdulrazzak, H., Nowakowska, B., Phoolchund, A., Lay, K., Ramasamy, T.S., et al. (2012). Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Molecular Therapy 20, 1953-1967.
Moschidou, D., Mukherjee, S., Blundell, M.P., Jones, G.N., Atala, A.J., Thrasher, A.J., Fisk, N.M., De Coppi, P., and Guillot, P.V. (2013). Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells and Development 22, 444-458.
Nagy, A., Gocza, E., Diaz, E.M., Prideaux, V.R., Iványi, E., Markkula, M., and Rossant, J. (1990). Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815-821.
Nardi, N.B., and da Silva Meirelles, L. (2008). Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handbook of Experimental Pharmacology (Springer), pp. 249-282.
Niwa, H., Ogawa, K., Shimosato, D., and Adachi, K. (2009). A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460, 118.
Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317.
Prusa, A.R. (2003). Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction 18, 1489-1493.
Ramiya, V.K., Maraist, M., Arfors, K.E., Schatz, D.A., Peck, A.B., and Cornelius, J.G. (2000). Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nature Medicine 6, 278-282.
Rehni, A.K., Singh, N., Jaggi, A.S., and Singh, M. (2007). Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behavioural Brain Research 183, 95-100.
Scherjon, S.A., Kleijburg-van der Keur, C., Noort, W.A., Claas, F.H., Willemze, R., Fibbe, W.E., and Kanhai, H.H. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102, 1548-1549.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
Toma, J.G., Akhavan, M., Fernandes, K.J., Barnabé-Heider, F., Sadikot, A., Kaplan, D.R., and Miller, F.D. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology 3, 778-784.
Underwood, M.A., Gilbert, W.M., and Sherman, M.P. (2005). Amniotic fluid: not just fetal urine anymore. Journal of Perinatology 25, 341-348.
van den Boom, V., Kooistra, S.M., Boesjes, M., Geverts, B., Houtsmuller, A.B., Monzen, K., Komuro, I., Essers, J., Drenth-Diephuis, L.J., and Eggen, B.J. (2007). UTF1 is a chromatin-associated protein involved in ES cell differentiation. The Journal of Cell Biology 178, 913-924.
Zhang, J., Tam, W.-L., Tong, G.Q., Wu, Q., Chan, H.-Y., Soh, B.-S., Lou, Y., Yang, J., Ma, Y., and Chai, L. (2006). Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nature Cell Biology 8, 1114-1123.
Zhang, L., Hu, J., and Athanasiou, K.A. (2009). The role of tissue engineering in articular cartilage repair and regeneration. Critical Reviews™ in Biomedical Engineering 37, 1-57.
Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell 13, 4279-4295.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74131-
dc.description.abstract羊水幹細胞 (amniotic fluid stem cell, AFSCs) 可以透過胎兒產前分析之羊膜穿刺樣本分離取得,是目前最容易取得較早期的體幹細胞種類。其中包含了許多不同的幹細胞種類,因此可以被廣泛運用於治療或緩解多種疾病模式。除此之外, AFSCs 被發現有一定比例的細胞會表現多能性幹細胞標誌,因此 AFSCs 中包含了分化潛能較為原始的細胞,甚至可能含有多能性幹細胞 (pluripotent stem cell)。本研究的目的在於探討 AFSCs是否可以利用抗體篩選的方式,取得分化潛能較為原始的細胞,並確認該細胞群是否具有參與胚胎分化之能力。
結果顯示,小鼠 AFSCs (mAFSCs) 會表現如骨髓間葉幹細胞之貼附性細胞特性,且能進行中胚層之硬骨細胞及脂肪細胞分化。除此之外,mAFSCs 亦會表現多能性特異標誌 Oct-4。本試驗使用磁珠抗體分離來篩選細胞,並選用已知的多能性幹細胞表面抗原CD117(c-kit),取得其中分化潛能較原始的幹細胞。將篩選後與未篩選之 mAFSCs 注射入野生型小鼠囊胚腔中,並使用表現綠螢光蛋白質之胚幹細胞作為本試驗之正控制組。結果顯示,注射綠螢光胚幹細胞之組別,經胚移置後產下綠色螢光嵌合體 (chimera) 5 隻,以確認胚胎操作技術之熟練度;注射未經篩選之 mAFSCs 組別,一天後觀察與囊胚內細胞群有少數細胞聚集 (aggregation) 現象,且胚移置後將 E8.5、E10.5 及 E12.5 之胎兒取出觀察,並無綠色螢光嵌合,最終產下 56 隻子代,成體皆無綠色螢光嵌合;而注射c-kit+ mAFSCs 之組別,一天後觀察有較高比例的細胞與內細胞群有聚集現象,且胚移置後將相同天數之胎兒取出觀察,胎兒本身並無綠色螢光嵌合,但於 E10.5 觀察到綠色螢光胚外組織嵌合體,最終產下21 隻子代,成體亦無綠色螢光嵌合。此結果顯示,未經篩選之 mAFSCs 與內細胞群差異過大,無法與內細胞群聚集,因此沒有參與胚胎分化之能力;而 c-kit+ mAFSCs 與內細胞群性質較為相似,因此部分細胞可以與內細胞群聚集,但並沒有能力參與胚胎本體分化,只能參與部分胚外組織分化。
綜觀上述而言,本試驗有助於了解mAFSCs之分化潛能,並得知以 CD117 篩選 mAFSCs 能使其更接近內細胞群之特性,且有部分細胞能夠參與胚外組織之分化,對於未來幹細胞及再生醫學工程提供基礎研究。
zh_TW
dc.description.abstractAmniotic fluid stem cells (AFSCs) can be isolated from amniocentesis samples from prenatal analysis of the fetus. AFSCs population contains many different stem cell types and can therefore be widely used to treat or alleviate multiple disease models. In addition, AFSCs were found that a certain proportion of cells express pluripotent stem cell markers. Therefore, AFSCs contain cells with primitive differentiation potential and may even contain pluripotent stem cells. The purpose of this study was to investigate whether AFSCs can use antibody sorting to obtain cells with primitive differentiation potential and to confirm whether it has the ability to participate in embryo differentiation.
The results show that mouse AFSCs (mAFSCs) exhibit adherent cell characteristics of mesenchymal stem cells, and is capable of differentiating to osteocytes and adipocytes. In addition, mAFSCs also exhibit the pluripotent stem cell marker, Oct-4. In this experiment, we chose stem cell surface antigen CD117 (c-kit) microbeads to obtain stem cells with primitive differentiation potential. The sorted and unsorted mAFSCs were injected into the wild-type blastocysts respectively, and GFP ESCs were used as the positive control in this experiment. The results showed that 5 GFP chimeras were born after embryo transfer in GFP ESCs control group that confirmed the embryo manipulation technology. As the unsorted mAFSCs group, there is no aggregation between mAFSCs and the inner cell mass (ICM) of host embryos. The fetus of E8.5, E10.5, E12.5 and 56 adult offspring showed no GFP chimeric; while the group of c-kit+ mAFSCs, some cells aggregated with ICM one day after injection. All of the fetus taken out after embryo transfer showed no GFP chimeric. However, we detected GFP expression in E10.5. So far, we haven’t obtain germline transmission ability in those adult GFP chimeras. This result shows that c-kit+ mAFSCs may have similar characteristic with the ICM. The c-kit+ mAFSCs show ability to contribute into extraembryonic tissue but not be able to participate into embryo development.
Taken together, this experiment is helpful to understand the differentiation potential of mAFSCs, and CD117 sorting can make its characteristic closer to the ICM. In addition, some of them participate in the development of extraembryonic tissue. This result provides basic research for stem cell and regenerative medicine projects in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:21:11Z (GMT). No. of bitstreams: 1
ntu-108-R06626015-1.pdf: 2477452 bytes, checksum: e5f246a087ee1aa6cb545d76e45558f7 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目次 vii
圖次 ix
表次 x
第1章 緒論 1
第2章 文獻檢討 3
2.1 幹細胞 3
2.1.1 幹細胞簡介 3
2.1.2 胚幹細胞 5
2.1.3 成體幹細胞 7
2.1.4 羊水幹細胞 7
2.2 多能性幹細胞潛能 10
2.2.1 多能性幹細胞標誌 10
2.2.2 多能性幹細胞分化潛能測試 11
2.3 抗體篩選羊水幹細胞之研究 14
2.3.1 羊水幹細胞之表面抗原 14
2.3.2 抗體篩選羊水幹細胞分化潛能之研究 15
第3章 試驗研究 16
3.1 綠色螢光小鼠羊水幹細胞之分離和建立 16
3.1.1 前言 16
3.1.2 材料與方法 17
3.1.3 結果與討論 22
3.2 綠色螢光小鼠羊水幹細胞體內分化之研究 25
3.2.1 前言 25
3.2.2 材料與方法 26
3.2.3 結果與討論 31
第4章 綜合討論 40
第5章 結論與未來展望 42
參考文獻 43
dc.language.isozh-TW
dc.subject羊水幹細胞zh_TW
dc.subject嵌合體zh_TW
dc.subject多能性幹細胞zh_TW
dc.subjectchimeraen
dc.subjectamniotic fluid stem cellsen
dc.subjectpluripotent stem cellsen
dc.title探討小鼠羊水幹細胞之體內及體外分化潛能zh_TW
dc.titleIn Vivo and in Vitro Differentiation Ability of Mouse
Amniotic Fluid Stem Cells
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋麗英,彭劭于,陳銘正,林佳靜
dc.subject.keyword羊水幹細胞,多能性幹細胞,嵌合體,zh_TW
dc.subject.keywordamniotic fluid stem cells,pluripotent stem cells,chimera,en
dc.relation.page47
dc.identifier.doi10.6342/NTU201903308
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved