Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74123
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu)
dc.contributor.authorChia-Hsien Suen
dc.contributor.author蘇家賢zh_TW
dc.date.accessioned2021-06-17T08:20:51Z-
dc.date.available2028-08-12
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citationAndley, U., and Xi, J. (2002). Reduced survival of lens epithelial cells in the alphaA-crystallin knockout mouse. Investigative Ophthalmology & Visual Science 43, 1073-1085.
Andley, U.P. (2007). Crystallins in the eye: function and pathology. Progress in Retinal and Eye Research 26, 78-98.
Bassnett, S. (2009). On the mechanism of organelle degradation in the vertebrate lens. Experimental Eye Research 88, 133-139.
Bibikova, M., Beumer, K., Trautman, J.K., and Carroll, D. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.
Bibikova, M., Carroll, D., Segal, D.J., Trautman, J.K., Smith, J., Kim, Y.-G., and Chandrasegaran, S. (2001). Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cellular Biology 21, 289-297.
Capecchi, M.R. (1989). Altering the genome by homologous recombination. Science 244, 1288-1292.
Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research 39, 82.
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., and Marraffini, L.A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
Foster, A., Gilbert, C., and Rahi, J. (1997). Epidemiology of cataract in childhood: a global perspective. Journal of Cataract & Refractive Surgery 23, 601-604.
Francis, P.J., Berry, V., Moore, A.T., and Bhattacharya, S. (1999). Lens biology: development and human cataractogenesis. Trends in Genetics 15, 191-196.
Gilbert, C., and Foster, A. (2001). Childhood blindness in the context of VISION 2020: the right to sight. Bulletin of the World Health Organization 79, 227-232.
Gill, D., Klose, R., Munier, F.L., McFadden, M., Priston, M., Billingsley, G., Ducrey, N., Schorderet, D.F., and Héon, E. (2000). Genetic heterogeneity of the Coppock-like cataract: a mutation in CRYBB2 on chromosome 22q11. 2. Investigative Ophthalmology & Visual Science 41, 159-165.
Graw, J. (2009). Mouse models of cataract. Journal of Genetics 88, 469-486.
Hendriks, W.T., Jiang, X., Daheron, L., and Cowan, C.A. (2015). TALEN‐and CRISPR/Cas9‐mediated gene editing in human pluripotent stem cells using lipid‐based transfection. Current Protocols in Stem Cell Biology 34, 5B.3.1-5B.3.25.
Hogan, B., Costantini, F., and Lacy, E. (1986). Manipulating the mouse embryo: a laboratory manual, Vol 34 (Cold spring harbor laboratory, NY).
Horii, T., Arai, Y., Yamazaki, M., Morita, S., Kimura, M., Itoh, M., Abe, Y., and Hatada, I. (2014). Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Scientific Reports 4, 4513.
Lee, M., Chea, K., Pyda, R., Chua, M., and Dominguez, I. (2017). Comparative analysis of non-viral transfection methods in mouse embryonic fibroblast cells. Journal of Biomolecular Techniques 28, 67-74.
Lubsen, N., Aarts, H., and Schoenmakers, J. (1988). The evolution of lenticular proteins: the β-and γ-crystallin super gene family. Progress in Biophysics Molecular Biology 51, 47-76.
Magabo, K.S., Horwitz, J., Piatigorsky, J., and Kantorow, M. (2000). Expression of βB2-crystallin mRNA and protein in retina, brain, and testis. Investigative Ophthalmology & Visual Science 41, 3056-3060.
McAvoy, J., Chamberlain, C., de Longh, R., Hales, A., and Lovicu, F. (1999). Lens development. Eye 13, 425-437.
Qiu, P., Shandilya, H., D'Alessio, J.M., O'Connor, K., Durocher, J., and Gerard, G.F. (2004). Mutation detection using Surveyor™ nuclease. Biotechniques 36, 702-707.
Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8, 2281-2308.
Robinson, M.L., and Overbeek, P.A. (1996). Differential expression of alpha A-and alpha B-crystallin during murine ocular development. Investigative Ophthalmology & Visual Science 37, 2276-2284.
Santana, A., and Waiswo, M. (2011). The genetic and molecular basis of congenital cataract. Arquivos Brasileiros de Oftalmologia 74, 136-142.
Santhiya, S.T., Abd-alla, S.M., Löster, J., and Graw, J. (1995). Reduced levels of γ-crystallin transcripts during embryonic development of murine Cat2 nop mutant lenses. Graefe's Archive for Clinical and Experimental Ophthalmology 233, 795-800.
Sheeladevi, S., Lawrenson, J., Fielder, A., and Suttle, C. (2016). Global prevalence of childhood cataract: a systematic review. Eye 30, 1160-1169.
Smith, J., Bibikova, M., Whitby, F.G., Reddy, A., Chandrasegaran, S., and Carroll, D. (2000). Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Research 28, 3361-3369.
Smith, J., Grizot, S., Arnould, S., Duclert, A., Epinat, J.-C., Chames, P., Prieto, J., Redondo, P., Blanco, F.J., and Bravo, J. (2006). A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research 34, 149.
Toates, F. (1972). Accommodation function of the human eye. Physiological Reviews 52, 828-863.
Willoughby, C.E., Ponzin, D., Ferrari, S., Lobo, A., Landau, K., and Omidi, Y. (2010). Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review. Clinical & Experimental Ophthalmology 38, 2-11.
Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., and Li, J. (2013). Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13, 659-662.
Wu, Y., Zhou, H., Fan, X., Zhang, Y., Zhang, M., Wang, Y., Xie, Z., Bai, M., Yin, Q., and Liang, D. (2015). Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research 25, 67-79.
Wyman, C., and Kanaar, R. (2006). DNA double-strand break repair: all's well that ends well. Annual Review of Genetics 40, 363-383.
Yuan, L., Yao, H., Xu, Y., Chen, M., Deng, J., Song, Y., Sui, T., Wang, Y., Huang, Y., Li, Z., et al. (2017). CRISPR/Cas9-mediated mutation of alphaA-crystallin gene induces congenital cataracts in rabbits. Investigative Ophthalmology & Visual Science 58, 34-41.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74123-
dc.description.abstract先天性白內障是一種可能造成視力損傷或失明的先天性遺傳眼科疾病。先前研究對先天性白內障患者進行定序和連鎖分析,以確認可能存在於白內障相關基因的DNA序列變異,結果發現一些患者帶有CRYAA基因突變,然而該基因突變之致病機制尚未完全明瞭。基因工程技術為研究基因功能時重要的研究方法之一。CRISPR-Cas9系統是近年來新興的基因編輯工具,由短嚮導RNA (single guide RNA, sgRNA) 和Cas9核酸酶組成,兩者協同作用誘發DNA雙股斷裂,引發細胞修復機制,進而造成缺失突變或特定序列的準確編輯。
本試驗擬利用 CRISPR-Cas9 系統將已知存在於人類先天性白內障患者的Cryaa 突變序列,導入小鼠基因組中。體外試驗部分,將能夠同時表現 sgRNA 和 Cas9 核酸酶的質體轉染至小鼠胚胎纖維母細胞 (mouse embryonic fibroblast, MEF) 中,利用質體含有的報導基因 mCherry 的特性,以流式細胞分選儀篩選出轉染成功的 MEF,並從分析結果比較 sgRNA 之效率。接著,將體外試驗中三組作用效率最佳 sgRNA、Cas9 mRNA 及單股 DNA 模板,顯微注射至一細胞期小鼠胚之細胞質中,於二細胞期或囊胚期進行胚移置,共產下 8 隻小鼠,其中 2 隻以裂隙燈觀察拍照發現具有先天性白內障病徵,也利用仔鼠耳刻萃取基因組 DNA 進行定序,定序結果發現帶有白內障的小鼠皆為具有 Cryaa 基因突變的個體,而不具白內障病徵的小鼠與野生型 C57BL/6j 品系小鼠的 Cryaa 基因序列相同。另外,預計於 F0 繁殖子代後再進行眼球組織切片染色。
目前尚未完全瞭解小鼠 Cryaa 突變與先天性白內障之間的分子機制與疾病機轉,本研究藉由將sgRNA、Cas9 mRNA 及單股 DNA 模板共同注射到小鼠一細胞期受精卵中,產製出具有 Cryaa 基因突變的先天性白内障疾病模式小鼠,以模擬人類先天性白內障患者的狀況。此疾病模式可作為未來研究者欲深入探討時的動物材料,望能為此基因的功能和分子機制提供研究基礎。
zh_TW
dc.description.abstractCongenital cataract is a disease caused by congenital hereditary opacity of the lens which may lead to visual impairment or blindness. Previous studies performed sequencing and linkage analysis of congenital cataract patients to confirm the candidate causative variants in cataract-related genes, and found that these patients had CRYAA mutations. However, the pathogenesis of these gene mutations are not fully understood. Genetic engineering technology is one of the important research methods for studying gene function, and the CRISPR-Cas9 system is an emerging genetic editing tool in recent years. The system consists of two components, single guided RNA (sgRNA) and Cas9 nuclease which initiate DNA double strand breaks. Then, the cellular DNA repair system gives rise to insertions or deletion mutations or precise editing.
The aim of this study is to introduce mutations identified in human CRYAA gene into mouse genome via CRISPR-Cas9 system. In the in vitro study, the plasmid expressing sgRNA and Cas9 nuclease were transfected into mouse embryonic fibroblast (MEF). The transfected cells were sorted by cell sorter using the characteristics of the reporter gene, and we could compare the efficiency of sgRNA from the analysis results. Next, three efficient sgRNA, Cas9 mRNA and single-strand DNA template were injected into the cytoplasm of one-cell mouse embryos by microinjection. When these embryos were cultured to two-cell stage or blastocyst stage, we performed embryo transfer into pseudo-pregnant mice. They currently gave birth 8 pups, 2 were found to have congenital cataract symptoms by slit lamp biomicroscopy. The genomic DNA was extracted from the ear of the pups for sequencing, and the sequencing results showed that mice with cataracts had Cryaa mutations. The F0 mice that showing no cataract phenotype had the same Cryaa sequence as the wild-type C57BL/6j mice. In addition, lens tissue sections and hematoxylin and eosin staining will be performed after the F0 mice breeding progeny.
The molecular mechanism and pathogenesis of mouse Cryaa mutations and congenital cataracts are not fully understood. This study generated congenital cataract mice with Cryaa gene mutation by co-injection of sgRNA, Cas9 mRNA and single-strand DNA templates into mouse one-cell embryos. This disease model can be used by future researchers to investigate the gene function of Cryaa, and it is expected to provide a research basis for the function and molecular mechanism of this gene.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:20:51Z (GMT). No. of bitstreams: 1
ntu-108-R06626007-1.pdf: 4980331 bytes, checksum: 8202c8219763abc6d85ba336f0fdadde (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract V
目錄 VII
圖次 IX
表次 X
第一章 緒論 1
第二章 文獻探討 2
2.1 晶狀體 2
2.1.1 眼球構造與功能 2
2.1.2 晶狀體構造與功能 4
2.1.3 晶狀體發育過程 4
2.2 先天性白內障 6
2.2.1白內障成因 6
2.2.2 先天性白內障盛行率 6
2.2.3 先天性白內障相關基因 7
2.2.4 先天性白內障小鼠疾病模式 12
2.3 CRISPR系統 13
2.3.1基因編輯系統之發展 13
2.3.2 CRISPR-Cas9系統作用原理 14
2.3.3 CRISPR-Cas9顯微注射 15
2.3.4 CRISPR-Cas9系統應用於先天性白內障之相關研究 16
第三章 試驗研究 18
3.1 細胞體外試驗 18
3.1.1 前言 18
3.1.2 試驗流程 19
3.1.3 材料與方法 20
3.1.4 實驗結果與討論 27
3.2 以CRISPR-Cas9系統產製Cryaa基因修飾小鼠 34
3.2.1 前言 34
3.2.2 試驗流程 34
3.2.3 材料與方法 35
3.2.4 實驗結果與討論 42
第四章 綜合討論 52
第五章 結論 53
第六章 未來展望 54
附錄 參考文獻 55
dc.language.isozh-TW
dc.subject白內障zh_TW
dc.subject先天性白內障zh_TW
dc.subjectCRISPR-Cas9系統zh_TW
dc.subjectCryaazh_TW
dc.subject先天性白?障疾病模式zh_TW
dc.subjectcataracten
dc.subjectcongenital cataracten
dc.subjectCRISPR-Cas9 systemen
dc.subjectCryaaen
dc.subjectcongenital cataract disease modelen
dc.title以CRISPR-Cas9系統建立模擬人類CRYAA突變之先天性白內障小鼠疾病模式zh_TW
dc.titleGeneration of Congenital Cataract Mouse that Recapitulates Human CRYAA Mutations via the CRISPR-Cas9 Systemen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳銘正,林佳靜,宋麗英,彭劭于
dc.subject.keyword白內障,先天性白內障,CRISPR-Cas9系統,Cryaa,先天性白?障疾病模式,zh_TW
dc.subject.keywordcataract,congenital cataract,CRISPR-Cas9 system,Cryaa,congenital cataract disease model,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201704246
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved