請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74108
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王昭男 | |
dc.contributor.author | Syuan-Wei Guo | en |
dc.contributor.author | 郭軒維 | zh_TW |
dc.date.accessioned | 2021-06-17T08:20:14Z | - |
dc.date.available | 2022-08-18 | |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | 1. American Society for Testing and Materials, West Conshohocken, PA,. “Standard test method for impedance and absorption of acoustical materials by the impedance tube method,” 1995.ASTM Designation : C384-95
2. American Society for Testing and Materials, West Conshohocken,PA. “Standard test method for impedance and absorption of acoustical materials using a tube, two microphones, and a digital frequency analysis system,” 1990. ASTM Designation:E1050-90. 3. J. Y. Chung and D. A. Blaser, “Transfer function method of measuring in-duct acoustic properties. I. Theory” J. Acoust. Soc. Am. 68(3),907-913 Sept(1980). 4. J. Y. Chung and D. A. Blaser“Transfer function method of measuring in-duct acoustic properties. II. Experiment” J. Acoust. Soc. Am. 68(3),914-921 Sept(1980). 5. H. Bodén and M. Åbom, “Influence of errors on the two‐microphone method for measuring acoustic properties in ducts” J. Acoust. Soc. Am. 79,541(1986). 6. H. Bodén and M. Åbom, “Error analysis of two‐microphone measurements in ducts” J. Acoust. Soc. Am. 83,2429(1988). 7. Acoustics—Determination of sound absorption coefficient and impedance in impedance tube—Part2:Transfer—function method,”, ISO 10534-2:1998(E) 8. A.J.Pretlove,“Free Vibrations of a Rectangular Panel Backed by a Closed Rectangular Cavity,” Journal of Sound and Vibration, volume 2, issue 3, pages 1997-209, July (1965) 9. K.Sakagami, D.Takahashi, H.Gen and M.Morimoto, “Acoustic Properties of an Infinite Elastic Plate with a Back Cavity,” Acta Acustica united with Acustica Vol. 78, pp. 288-295 June(1993) 10. K. Sakagami, M. Kiyama, M. Morimoto and D. Takahashi “Sound Absorption of a Cavity-Backed Membrane A Step Towards Design Method for Membrane-Type Absorbers,” Applied Acoustics, Vol. 49, No. 3, pp. 237-247, (1996) 11. C. Rajalinham, R. B. Bhat and G. D. Xistris, “Vibration of Circular Membrane Backed by Cylindrical Cavity,” Int. J. Mech. Sci. Vol. 40, No. 8, pp. 723-734,(1998) 12. D. G. Gorman, J. M. Reese, J. Horácek and K. Dedouch, “Vibration Analysis of a Circular Disc Backed by a Cylindrical Cavity,” Journal of Mechanical Engineering Science, Vol. 215, pp. 1303-1311(2001) 13. H. Liu, D. A. Olson and M. Yu, “2014 Modeling of an Air-Backed Diaphragm in Dynamic Pressure Sensors: Effects of the Air Cavity” 14. A. N. Thiele, “Loudspeakers in Vented Boxes: Part I,” Journal Of the Audio Engineering Society, vol. 19, p. 11, 1971 15. R. H. Small. “Closed-Box Loudspeaker Systems,”Journal of Audio Engineering Society, vol. 20, 21, pp. 285-303, 1972 16. R. H. Small, “Direct-Radiator Loudspeaker Systems Analysis, Journal of Audio Engineering,” vol. 20, 1972 17. R. H. Small, “Vented-Box Loudspeaker Systems,” Journal of Audio Engineering Society, vol. 21, pp. 316-343, 1973. 18. 郭晟宇,黃錦煌, “可攜式揚聲器之分析與模擬,” 碩士論文, 機械工程研究所, 逢甲大學, 2007. 19. 黃國峯,金大仁,揚聲器各元件對聲壓曲線之影響, 碩士論文, 車輛工程研究所, 台北科技大學, 2011. 20. 郭天立,王昭男,揚聲器初步設計所需之參數研究,碩士論文, 工程科學及海洋工程學系, 臺灣大學, 2013. 21. 蔡渝斐,馬劍清,開發揚聲器量測及分析系統並應用於電阻抗、振膜振動、線性參數與聲壓位準之量測, 碩士論文, 機械工程研究所, 臺灣大學, 2017. 22. L. E. Kinsler, A. R. Frey, A. B. Coppens and J.V. Sanders, “Fundamentals of Acoustics,” John Wiley & Sons, Fourth Edition(2000). 23. M. Abramowitz, I. Stegun, “Handbook of Mathematical Functions,”1979. 24. 黃稟翰,謝傳璋, 以阻抗管法測量薄膜結構之等價MCK之研究, 碩士論文, 工程科學及海洋工程學系, 臺灣大學, 2012. 25. W. M. Leach, “Introduction to Electroacoustics and Audio Amplifier Design: Kendal/Hunt Publishing Company, 2003. 26. John I. Dunlop, “Measurement of acoustic attenuation in marine sediments by impedance tube,” J. Acoust. Soc. Am. 91(1),460-469, .1992 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74108 | - |
dc.description.abstract | 動圈式耳機為電—機—聲整合系統,其性能的展現,由系統間的相互配合決定。機械系統將電能轉換成聲能,由振膜與振膜框所組成的振膜系統為此中的一員。機械系統於低頻作動時,可以等效質量—彈簧—阻尼系統來模擬,前述三個參數決定了此頻率範圍下系統的性能,然而振膜系統之等價彈簧係數於耳機成品製成前,幾乎難以事前得知,因此本研究嘗試利用現有的聲學阻抗管與電聲學類比電路的理論,分別構思出量測方法。聲學阻抗管法測量振膜組合—腔體之聲學比阻抗,再計算機械阻抗與曲線擬合,得出等價彈簧係數;電聲學類比電路法測量揚聲器—腔體—振膜組合之共振頻率,再透過理論模擬與迭代,得出等效彈簧係數。從實驗結果發現,聲阻抗法與電阻抗法所得的等價彈簧係數值接近。利用此兩種方法來量測振膜系統等價彈簧係數具可行性。 | zh_TW |
dc.description.abstract | Moving-coil earphone is an integration of electrical, mechanical and acoustical system. Its performance is determined by the collaboration of these systems. Mechanical system converts electrical energy to acoustical energy, and diaphragm system, which composed of diaphragm and diaphragm rim is part of it. At low frequency, mechanical system can be simulated by an equivalent mass-spring-damper system. The equivalent mass, spring constant, and damping coefficient determine the performance of mechanical system at this frequency range. However, the equivalent spring constant of diaphragm system cannot be known before the earphone is assembled. Therefore, in this research, acoustic and electrical impedance method are adopted to determine the equivalent spring constant of the diaphragm system. In acoustic impedance method, the specific acoustic impedance of diaphragm system with an air-backed cavity was measured, and through curve fitting, the equivalent spring constant can be obtained. In electrical impedance method, the resonant frequency of system comprising of loudspeaker, cavity, and diaphragm system was measured, and by iteration, the equivalent stiffness value can be acquired. It can be shown from the result that the equivalent spring constant measured by the respective method are close in the order of magnitude and these two methods are feasible. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:20:14Z (GMT). No. of bitstreams: 1 ntu-108-R06525022-1.pdf: 3030062 bytes, checksum: 6995f4626288e17a9fcccf1e388c4cff (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 1.3 論文架構 2 第二章 理論方法 4 2.1 波動方程式 4 2.1.1 狀態方程式 4 2.1.2 連續方程式 4 2.1.3 尤拉方程式 5 2.2 腔體等價彈簧係數 5 2.3 聲阻抗法理論推導 7 2.3.1 等截面圓管波導 7 2.3.2 平面波理論 9 2.3.3 反射係數 10 2.3.4 麥克風靈敏度與相位誤差消除[24] 11 2.3.5 等效MCK系統 12 2.3.6 表面聲學阻抗 14 2.3.7 振膜彈簧常數計算 14 2.4 電阻抗法理論推導 16 2.4.1 動圈式揚聲器類比電路 16 2.4.2 動圈式揚聲器構造介紹 16 2.4.3揚聲器—腔體—振膜組合之類比電路 22 第三章 實驗裝置及流程 24 3.1 實驗設備介紹 24 3.2 聲阻抗實驗 26 3.2.1 裝置設計 26 3.2.2 實驗流程 31 3.3 電阻抗實驗 36 3.3.1 裝置設計 36 3.3.2 實驗流程 38 第四章 實驗結果與討論 40 4.1 聲阻抗實驗 40 4.2 電阻抗實驗 51 第五章 結論 57 參考文獻 59 | |
dc.language.iso | zh-TW | |
dc.title | 以聲阻抗和電阻抗法測量振膜等價彈簧係數之研究 | zh_TW |
dc.title | Measuring the equivalent spring constant of the diaphragm by acoustic impedance and electrical impedance method | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝傳璋,黃維信,湯耀期 | |
dc.subject.keyword | 電阻抗,阻抗管,腔體,振膜,等價彈簧係數, | zh_TW |
dc.subject.keyword | electrical impedance,impedance tube,cavity,diaphragm,equivalent spring constant, | en |
dc.relation.page | 61 | |
dc.identifier.doi | 10.6342/NTU201903545 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。