Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74106
標題: 基於機器學習演算法的射頻消融術後肝癌復發預測模型
Recurrence Predictive Models for Patients with Hepatocellular Carcinoma after Radiofrequency Ablation based on Machine Learning Algorithms
作者: Po-Wen Chen
陳柏文
指導教授: 周承復
關鍵字: 肝癌,機器學習,
Hepatocellular carcinoma,Machine learning,
出版年 : 2019
學位: 碩士
摘要: 肝細胞癌在所有癌症的死亡率中常年位居前列,病患即使有精確診斷出肝癌腫瘤並接受有效治療,術後仍有高機率會復發。因此,透過分析病患術前的檢驗報告並建立復發預測模型,可以幫助進行術後追蹤,以期及早發現腫瘤的復發並加以治療。
本篇論文所使用的資料集是於2007~2013年,接受腫瘤射頻消融術作為第一次肝癌治療的病患。資料樣本數為334筆,其中256筆為術後一年後未復發的病患,78筆為復發的病患。這份資料集取自台大醫院資料庫,曾由一團隊進行研究分析,並發表了數篇研究成果,包含了資料庫建立、特徵提取,以及資料缺值插補等主題,雖然其中有提出復發預測模型的建立,不過僅有使用支援向量機,並未提及不同模型間效能的比較。
本篇論文聚焦於討論支援向量機、隨機森林和深度神經網路在各種實驗環境下的效能,包含了使用不同模型參數、資料標準化,以及資料升採樣的設置。
Mortality rate of hepatocellular carcinoma (HCC) has been one of the top among all kinds of cancers. Despite receiving accurate diagnosis and effective treatments, the recurrence rate of HCC is still high. Therefore, building recursive model by analyzing preoperative reports is helpful for follow-up and observing recurrence of tumor as soon as possible.
The dataset used in this thesis are patients who received radiofrequency ablation (RFA) as first treatment. The size of the dataset is 334. 256 patients did not have recurrent HCC one year after RFA treatment and the other 78 patients had HCC. This dataset were collected from National Taiwan University Hospital (NTUH). One group in NTUH have done research on this dataset and proposed several papers, including database establishment, feature extraction, and data imputation. Although some of them have proposed an approach for building predictive model, the authors only used support vector machine and did not mention the comparison of performances between different models.
This thesis is focusing on discussion between the performances of support vector machine, random forest, and deep neural network under a variety of experimental environment, including using different parameters of model, data normalizations, and methods of data up-sampling.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74106
DOI: 10.6342/NTU201903532
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.32 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved