Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74104
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭龍磻(Lung-Pan Cheng)
dc.contributor.authorYi Chenen
dc.contributor.author陳毅zh_TW
dc.date.accessioned2021-06-17T08:20:05Z-
dc.date.available2021-04-07
dc.date.copyright2021-04-07
dc.date.issued2021
dc.date.submitted2021-03-03
dc.identifier.citation[1] P. Appelbaum and S. Clark. Science! Fun? A critical analysis of design/content/evaluation. Journal of Curriculum Studies, 33(5):583–600, 2001.
[2] B. Araujo, R. Jota, V. Perumal, J. X. Yao, K. Singh, and D. Wigdor. Snake charmer: Physically enabling virtual objects. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’16, pages 218–226, New York, NY, USA, 2016. ACM.
[3] Aristotle. Metaphysics. The Internet Classics Archive, 350BCE.
[4] F. Bacon. The Advancement of Learning: Book I. Cambridge University Press,2013.
[5] P. Baudisch, H. Pohl, S. Reinicke, E. Wittmers, P. Lühne, M. Knaust, S. Köhler, P. Schmidt, and C. Holz. Imaginary reality gaming: Ball games without a ball. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, page 405–410, New York, NY, USA, 2013. Association for Computing Machinery.
[6] beatsaber. beatsaber, 7 2019. https://beatsaber.com.
[7] J. Bogen and J. Woodward. Saving the phenomena. Philosophical Review,97(3):303–352, 1988.
[8] J. H. Brockmyer, C. M. Fox, K. A. Curtiss, E. McBroom, K. M. Burkhart, and J. N. Pidruzny. The development of the game engagement questionnaire: A measure of engagement in video game-playing. Journal of Experimental Social Psychology, 45(4):624–634, 2009.
[9] R. Carson. The sense of wonder : a celebration of nature for parents and children. Harper Perennial, New York, NY, 2017.
[10] L. Chan and K. Minamizawa. Frontface: Facilitating communication between hmd users and outsiders using front-facing-screen hmds. In Proceedings of the 19th International Conference on Human­Computer Interaction with Mobile Devices and Services, MobileHCI ’17, pages 22:1–22:5, New York, NY, USA, 2017. ACM.
[11] D. Chen, A. Song, L. Tian, L. Fu, and H. Zeng. Fw­touch: A finger wearable haptic interface with a mr foam actuator for displaying surface material properties on a touch screen. IEEE transactions on haptics, 2019.
[12] L. P. Cheng, P. Lühne, P. Lopes, C. Sterz, and P. Baudisch. Haptic turk: A motion platform based on people. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, pages 3463–3472, New York, NY, USA, 2014. ACM.
[13] L. P. Cheng, S. Marwecki, and P. Baudisch. Mutual human actuation. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pages 797–805, New York, NY, USA, 2017. ACM.
[14] L. P. Cheng, T. Roumen, H. Rantzsch, S. Köhler, P. Schmidt, R. Kovacs, J. Jasper, J. Kemper, and P. Baudisch. Turkdeck: Physical virtual reality based on people. In Proceedings of the 28th Annual ACM Symposium on User Interface Software #38; Technology, UIST ’15, pages 417–426, New York, NY, USA, 2015. ACM.
[15] T. W. D. Company. Disneyland park, July 1955. https://disneyland.disney.go. com/.
[16] A. Denisova, A. I. Nordin, and P. Cairns. The convergence of player experience questionnaires. In Proceedings of the 2016 Annual Symposium on Computer­ Human Interaction in Play, CHI PLAY ’16, pages 33–37, New York, NY, USA, 2016. ACM.
[17] J. Dewinter and L. Sheldon. Video games can create beneficial social connections and take on real issues, April 2018. https://venturebeat.com/2018/04/05/ video-games-can-create-beneficial-social-connections-and-take-on-real-issues/.
[18] J. V. Draper, D. B. Kaber, and J. M. Usher. Telepresence. Human Factors, 40(3):354–375, 1998. PMID: 9849099.
[19] Dreamscape. Dreamscape, August 2017. https://dreamscapeimmersive.com/ adventures/details/magicprojector01.
[20] EscapeSF. Real time escape room, May 2019. https://www.escapesf.net.
[21] R. Feasey. Creative Science: Achieving the WOW Factor with 5­11 Year Olds.David Fulton, 2005.
[22] D. Fitzkee. Magic by Misdirection. Magic Limited, 1945.
[23] S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii. inform: dynamic physical affordances and constraints through shape and object actuation. In Uist, volume 13, pages 417–426, 2013.
[24] GameCol. Monster realms machine, August 2008. https://jjgamemachine.com/ product/Monster_Realms_kids_ball_shooting_game-en.html.
[25] S. C. Games. Keep talking and nobody explodes, 2015.
[26] H. E. Gruber, C. D. Fink, and V. Damm. Effects of experience on perception of causality., 1957.
[27] J. Gugenheimer, E. Stemasov, J. Frommel, and E. Rukzio. Sharevr: Enabling colocated experiences for virtual reality between hmd and non-hmd users. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 4021–4033, New York, NY, USA, 2017. ACM.
[28] J. Gugenheimer, E. Stemasov, H. Sareen, and E. Rukzio. Facedisplay: Towards asymmetric multi­user interaction for nomadic virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 54:1–54:13, New York, NY, USA, 2018. ACM.
[29] S. Gustafson. Imaginary Interfaces. doctoralthesis, Universität Potsdam, 2013.
[30] S. Gustafson, D. Bierwirth, and P. Baudisch. Imaginary Interfaces: Spatial Interaction with Empty Hands and without Visual Feedback. In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, UIST ’10, pages 3–12, New York, NY, USA, 2010. Association for Computing Machinery.
[31] J. Harris and M. Hancock. To asymmetry and beyond!: Improving social connectedness by increasing designed interdependence in cooperative play. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 9:1–9:12, New York, NY, USA, 2019. ACM.
[32] J. Hartmann, C. Holz, E. Ofek, and A. D. Wilson. Realitycheck: Blending virtual environments with situated physical reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 347:1–347:12, New York, NY, USA, 2019. ACM.
[33] Z. He, F. Zhu, and K. Perlin. Physhare: Sharing physical interaction in virtual reality. In Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pages 17–19, New York, NY, USA, 2017. ACM.
[34] M.­W. Hsu, T.­Y. Wu, Y.­C. Wu, Y.­A. Chen, Y.­C. Lin, and P.­S. Ku. Party animals: Creating immersive gaming experience for physically co-present vr and non-vr players. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’17, pages 222–225, New York, NY, USA, 2017. ACM.
[35] W. IJsselsteijn, Y. de Kort, and K. Poels. The Game Experience Questionnaire. Technische Universiteit Eindhoven, 2013.
[36] C. Jennett, A. L. Cox, P. Cairns, S. Dhoparee, A. Epps, T. Tijs, and A. Walton. Measuring and defining the experience of immersion in games. Int. J. Hum. Comput. Stud., 66(9):641–661, Sept. 2008.
[37] M. J. King. Disneyland and Walt Disney World: Traditional Values in Futuristic Form. The Journal of Popular Culture, 15(1):116–140, 1981.
[38] P. Kivy. Music alone : philosophical reflections on the purely musical experience. Cornell University Press, Ithaca, 1990.
[39] L. Koren. Wabi-sabi for artists, designers, poets philosophers. Imperfect Publishing, Point Reyes, California, 2008.
[40] E. Kroski. Escape Rooms and other immersive experiences in the library. American Library Association, 2018.
[41] G. Kuhn, J. A. Olson, and A. Raz. Editorial: The Psychology of Magic and the Magic of Psychology. Frontiers in Psychology, 7:1358, 2016.
[42] S. Kumari, S. Deterding, and G. Kuhn. Why game designers should study magic. In Proceedings of the 13th International Conference on the Foundations of Digital Games, FDG '18, New York, NY, USA, 2018. Association for Computing Machinery.
[43] M. Lankes, J. Hagler, G. Kostov, and J. Diephuis. Invisible walls: Co-presence in a co­located augmented virtuality installation. In Proceedings of the Annual Symposium on Computer­Human Interaction in Play, CHI PLAY ’17, pages 553– 560, New York, NY, USA, 2017. ACM.
[44] C. L’Ecuyer. The Wonder Approach to learning. Frontiers in Human Neuroscience, 8(OCT):1–8, 2014.
[45] D. Leithinger, S. Follmer, A. Olwal, S. Luescher, A. Hogge, J. Lee, and H. Ishii. Sublimate: state-changing virtual and physical rendering to augment interaction with shape displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1441–1450. ACM, 2013.
[46] A. M. Leslie. The perception of causality in infants. Perception, 11(2):173–186, 1982.
[47] J. Li, H. Deng, and P. Michalatos. Catescape: An asymmetrical multiplatform game connecting virtual, augmented and physical world. In Extended Abstracts Publication of the Annual Symposium on Computer­Human Interaction in Play, CHI PLAY '17 Extended Abstracts, page 585–590, New York, NY, USA, 2017. Association for Computing Machinery.
[48] D. Lindlbauer and A. D. Wilson. Remixed reality: Manipulating space and time in augmented reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 129:1–129:13, New York, NY, USA, 2018. ACM.
[49] T. F. LLC. Black hat cooperative, 2016.
[50] G. T. G. Ltd. Overcooked 2, 2018.
[51] A. Michotte. The perception of causality. Basic Books, Oxford, England, 1963.
[52] I. Milne. A Sense of Wonder, aris Starting Point for Inquiry in Primary Science. Science Education International, 21(2):102–115, 2010.
[53] V. Mosco. The Digital Sublime: Myth, Power, and Cyberspace. The MIT Press, 2005.
[54] C. Moser, V. Fuchsberger, and M. Tscheligi. Rapid assessment of game experiences in public settings. In Proceedings of the 4th International Conference on Fun and Games, FnG '12, page 73–82, New York, NY, USA, 2012. Association for Computing Machinery.
[55] oculus. oculus, 1 2019. https://www.oculus.com.
[56] M. Ogata. Magneto-haptics: Embedding magnetic force feedback for physical interactions. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 737–743, New York, NY, USA, 2018. ACM.
[57] P. M. Opdal. Curiosity, wonder and education seen as perspective development. Studies in Philosophy and Education, 20(4):331–344, 2001.
[58] R. Pan, H. Lo, and C. Neustaedter. Collaboration, awareness, and communication in real-life escape rooms. In Proceedings of the 2017 Conference on Designing Interactive Systems, DIS ’17, pages 1353–1364, New York, NY, USA, 2017. ACM.
[59] H. L. Parsons. A Philosophy of Wonder. Philosophy and Phenomenological Research, 30(1):84, 1969.
[60] R. Pausch, J. Snoddy, R. Taylor, S. Watson, and E. Haseltine. Disney’s aladdin: First steps toward storytelling in virtual reality. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pages 193–203, New York, NY, USA, 1996. ACM.
[61] pin donkey. pin donkey, 3 2019. https://en.wikipedia.org/wiki/Pin_the_tail_ on_the_donkey.
[62] Pinata. Pinata, 4 2019. https://hangouts.google.com/call/ tBK30TxNugAdkIWvS0EyAEEM.
[63] C. S. Pinhanez. Physically interactive story environments. IBM Systems Journal, 39(3­4):438–454, 2000.
[64] P. F. Powesland. The effect of practice upon the perception of causality. Canadian Journal of Psychology/Revue canadienne de psychologie, 13(3):155–168, 1959.
[65] R. A. Rensink and G. Kuhn. A framework for using magic to study the mind. Frontiers in psychology, 5:1508, feb 2015.
[66] S. Rigby and R. Ryan. The player experience of need satisfaction (pens) model. Immersyve Inc, pages 1–22, 2007.
[67] M. Riley. Musical listening in the German Enlightenment : attention, wonder and astonishment. Routledge, London, 2016.
[68] J. S. Roo and M. Hachet. One reality: Augmenting how the physical world is experienced by combining multiple mixed reality modalities. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pages 787–795, New York, NY, USA, 2017. ACM.
[69] T. Room. The room immersive adventures, August 2020. https:// the-room-berlin.com/.
[70] P. Sajjadi, E. Gutierrez, S. Trullemans, and O. Troyer. Maze commander: A collaborative asynchronous game using the oculus rift the sifteo cubes. CHI PLAY 2014 - Proceedings of the 2014 Annual Symposium on Computer-Human Interaction in Play, pages 227–236, 10 2014.
[71] M. V. Sanchez-Vives and M. Slater. From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4):332–339, 2005.
[72] M. Sato. Development of string-based force display: Spidar. In 8th international conference on virtual systems and multimedia. Citeseer, 2002.
[73] A. Schinkel. Wonder and Moral Education. Educational Theory, 68(1):31–48, 2018.
[74] A. Schinkel. Wonder, Mystery, and Meaning. Philosophical Papers, 48(2):293– 319, 2019.
[75] B. J. Scholl and P. D. Tremoulet. Perceptual causality and animacy. Trends in Cognitive Sciences, 4(8):299 – 309, 2000.
[76] A. F. Shand. The foundations of character: Being a study of the tendencies of the emotions and sentiments. MacMillan Co, New York, NY, US, 1914.
[77] J. Shigeyama, T. Hashimoto, S. Yoshida, T. Narumi, T. Tanikawa, and M. Hirose. Transcalibur: A weight shifting virtual reality controller for 2d shape rendering based on computational perception model. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 11:1–11:11, New York, NY, USA, 2019. ACM.
[78] A. F. Siu, E. J. Gonzalez, S. Yuan, J. B. Ginsberg, and S. Follmer. Shapeshift: 2d spatial manipulation and self-actuation of tabletop shape displays for tangible and haptic interaction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, page 291. ACM, 2018.
[79] SQV. Big water canon, June 2005. https://store.jjgamemachine.com/ big-water-cannon.
[80] M. Sra, D. Jain, A. P. Caetano, A. Calvo, E. Hilton, and C. Schmandt. Resolving spatial variation and allowing spectator participation in multiplayer vr. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages 221–222. ACM, 2016.
[81] M. Sra, A. Mottelson, and P. Maes. Your place and mine: Designing a shared vr experience for remotely located users. In Proceedings of the 2018 Designing Interactive Systems Conference, DIS ’18, pages 85–97, New York, NY, USA, 2018. ACM.
[82] F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Estimation of detection thresholds for redirected walking techniques. IEEE transactions on visualization and computer graphics, 16(1):17–27, 2009.
[83] E. V. Subbotskiĭ. Magic and the mind : mechanisms, functions, and development of magical thinking and behavior. Oxford University Press, New York, 2010.
[84] superhotvr. superhotvr, 8 2019. https://superhotgame.com/vr/m.
[85] I. E. Sutherland. A head-mounted three dimensional display. In Proceedings of the December 9­11, 1968, Fall Joint Computer Conference, Part I, AFIPS ’68 (Fall, part I), pages 757–764, New York, NY, USA, 1968. ACM.
[86] S.­Y. Teng, T.­S. Kuo, C. Wang, C.­h. Chiang, D.­Y. Huang, L. Chan, and B.­Y. Chen. Pupop: Pop-up prop on palm for virtual reality. In The 31st Annual ACM Symposium on User Interface Software and Technology, pages 5–17. ACM, 2018.
[87] B. Tognazzini. Principles, techniques, and ethics of stage magic and their application to human interface design. In Proceedings of the INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems, CHI '93, page 355– 362, New York, NY, USA, 1993. Association for Computing Machinery.
[88] tyffonium. tyffonium, September 2017. https://www.tyffonium.com.
[89] Valve. Counter-strike: Global offensive, 2012.
[90] S. Vasalou. Wonder : a grammar. State University of New York Press, Albany, 2015.
[91] vive. vive, 2 2019. http://www.vive.com.
[92] T. void. A virtual reality experience, May 2016. https://www.thevoid.com.
[93] J. von Willich, M. Funk, F. Müller, K. Marky, J. Riemann, and M. Mühlhäuser. You invaded my tracking space! using augmented virtuality for spotting passersby in room-scale virtual reality. In Proceedings of the 2019 on Designing Interactive Systems Conference, DIS ’19, pages 487–496, New York, NY, USA, 2019. ACM.
[94] H. Warmelink, I. Mayer, J. Weber, B. Heijligers, M. Haggis, E. Peters, and M. Louwerse. Amelio: Evaluating the team-building potential of a mixed reality escape room game. In Extended Abstracts Publication of the Annual Symposium on Computer­Human Interaction in Play, CHI PLAY '17 Extended Abstracts, page 111–123, New York, NY, USA, 2017. Association for Computing Machinery.
[95] G. White. On immersive theatre. Theatre Research International, 37(3):221–235, 2012.
[96] M. Wolfe. Rube Goldberg : inventions. Simon Schuster, New York, 2000.
[97] P. Wouters, H. van Oostendorp, R. Boonekamp, and E. van der Spek. The role of game discourse analysis and curiosity in creating engaging and effective serious games by implementing a back story and foreshadowing. Interacting with Computers, 23(4):329 – 336, 2011. Cognitive Ergonomics for Situated Human­Automation Collaboration.
[98] K.­T. Yang, C.­H. Wang, and L. Chan. Sharespace: Facilitating shared use of the physical space by both vr head-mounted display and external users. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 499–509, New York, NY, USA, 2018. ACM.
[99] L. Yao, R. Niiyama, J. Ou, S. Follmer, C. Della Silva, and H. Ishii. Pneui: pneumatically actuated soft composite materials for shape changing interfaces. In Proceedings of the 26th annual ACM symposium on User interface software and Technology, pages 13–22. ACM, 2013.
[100] A. Zenner and A. Krüger. Shifty: A weight-shifting dynamic passive haptic proxy to enhance object perception in virtual reality. IEEE transactions on visualization and computer graphics, 23(4):1285–1294, 2017.
[101] Z. Zhai, Y. Wang, and H. Jiang. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proceedings of the National Academy of Sciences, 115(9):2032–2037, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74104-
dc.description.abstract我們提出了 Reality Rift ,它是一個混合物理與想像實境的新體驗。在 Reality Rift 中,一個物體的一或多個物理組成要素是看不見的,但這些要素產生的現象仍舊會被顯示。當玩家從發生的現象中,想像出組成要素的存在,便能像平常一樣,正常地與這些物體互動。這個過程產生了驚奇感,它會激發人們的好奇心並加強體驗的享受程度。我們藉由建立 6 個互動範例,來探索 Reality Rift 的概念以及設計頻譜。將這 6 個互動範例整合成一個 5 分鐘的體驗,並在密室逃脫工作室舉辦體驗展。我們將 Reality Rift 與所有物理組成要素都可以看得到的基準條件做比較,收集了 50 個參與者的回饋,發現玩家在 Reality Rift 體驗中,具有更多的好奇心 (6.03 vs. 4.17/7) 與更高的享受程度 (6.00 vs. 4.98/7) ,證明了 Reality Rift 可以產生驚奇感。zh_TW
dc.description.abstractWe present Reality Rift, a novel experience that mixes physical and imaginary realities. In Reality Rift, one or more physical components of an object are invisible while effects caused by them are still presented. Players interact with the object normally as in real life while inferring the existence of imaginary components from the occurring phenomena. This process induces a sense of wonder that triggers players' curiosity and enhances enjoyment of the experience. We explored the concept of Reality Rift by building 6 examples to probe the Reality Rift spectrum. We wrapped all our interactions into a 5-minute experience and deployed it in an escape room studio. We compared Reality Rift with a baseline condition where all physical components are visible. Our 50-participant result shows evidence that Reality Rift induces a sense of wonder that triggers more players' curiosity (6.03 vs. 4.17/7) and generates a more enjoyable experience (6.00 vs. 4.98/7).en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:20:05Z (GMT). No. of bitstreams: 1
U0001-0303202110353100.pdf: 32705157 bytes, checksum: fd14d58a08d46176e83a15584b718841 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
1 Introduction 1
2 Related Work 4
2.1 Immersive Experiences........................... 4
2.2 Sense of Wonder .............................. 5
2.3 Physical Displays.............................. 6
2.4 Summary .................................. 6
3 Pondering Reality Rift 7
3.1 Choosing Physical Interactions....................... 7
3.2 Disappearing Intermediate Phenomena................... 8
3.3 Simulation and Dissimulation........................ 9
4 Interactions in Reality Rift 10
4.1 Wind and Fire................................ 10
4.2 Water .................................... 11
4.3 Hand Tool.................................. 12
5 Field Deployment 14
5.1 Participants ................................. 15
5.2 Task and Procedure............................. 15
5.3 Results.................................... 16
6 Discussion 18
6.1 Formation of Wonder............................ 18
6.2 Feedback from Experienced Designers................... 19
6.3 Multiplayer Experience........................... 20
6.4 More Examples............................... 21
6.5 Other Applications ............................. 22
7 Limitation and Future Work 23
8 Conclusion 24
A A Brief History of Reality Rift 25
B AIT 2019 - MetaWorld 27
B.1 abstract ................................... 27
B.2 Introduction................................. 28
B.2.1 Balance Asymmetry ........................ 28
B.2.2 EscapeRoom............................ 29
B.2.3 Contributions............................ 30
B.3 Related Work ................................ 30
B.3.1 Asymmetric Co­located Gaming.................. 30
B.3.2 Interaction with VR players .................... 30
B.4 Interaction Concepts ............................ 31
B.4.1 Separated Worlds.......................... 31
B.4.2 Divide and Conquer ........................ 33
B.4.3 Same Object with Two Identities.................. 35
B.4.4 Obfuscation............................. 36
B.4.5 Influence Another World...................... 38
B.5 Implementation ............................... 39
B.5.1 Real World ............................. 40
B.5.2 Virtual World............................ 40
B.6 Evaluation.................................. 40
B.7 Discussion.................................. 41
B.7.1 More applications.......................... 41
B.7.2 Ability to Physical Manipulation.................. 41
B.7.3 Design Guideline.......................... 41
B.7.4 Good Use of Asymmetry...................... 42
B.8 Conclusion ................................. 42
C CHI 2020 - Reality Rift 43
C.1 abstract ................................... 43
C.2 Introduction................................. 44
C.2.1 Walking through Reality Rift.................... 45
C.2.2 Contribution ............................ 49
C.3 Related Work ................................ 50
C.3.1 Immersive Experiences....................... 50
C.3.2 Asymmetric Collaborative Interactions . . . . . . . . . . . . . . 50
C.3.3 Physical Displays.......................... 52
C.4 Designing Reality Rift ........................... 53
C.4.1 Rules ................................ 53
C.4.2 Inferring from Phenomena..................... 54
C.5 Building Reality Rift ............................ 54
C.5.1 Water Tank ............................. 55
C.5.2 Barrel................................ 55
C.5.3 Cup................................. 58
C.5.4 Rift Spirit.............................. 58
C.5.5 Hide and Disclosure mechanism.................. 58
C.6 User study.................................. 59
C.6.1 Task and Procedure......................... 59
C.6.2 Results ............................... 60
C.7 Discussion.................................. 63
C.7.1 Adding multiple phenomena.................... 64
C.7.2 Fast assembling mechanism .................... 64
C.7.3 Invisible sensation ......................... 65
C.7.4 Limited capabilities of presenting phenomena . . . . . . . . . . . 66
C.7.5 Unexpected problems in the experience . . . . . . . . . . . . . . 66
C.8 Conclusion ................................. 67
Bibliography 68
dc.language.isozh-TW
dc.subject混合實境zh_TW
dc.subject沈浸式體驗zh_TW
dc.subject物理顯示器zh_TW
dc.subject想像介面zh_TW
dc.subjectMixed realityen
dc.subjectImaginary interfacesen
dc.subjectPhysical displaysen
dc.subjectImmersive experiencesen
dc.title實境裂縫:混合物理與想像實境zh_TW
dc.titleReality Rift: Mixing Physical and Imaginary Realitiesen
dc.typeThesis
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳彥仰(Mike Y. Chen),陳炳宇(Bing-Yu Chen),蔡欣叡(Hsin-Ruey Tsai)
dc.subject.keyword混合實境,沈浸式體驗,物理顯示器,想像介面,zh_TW
dc.subject.keywordMixed reality,Immersive experiences,Physical displays,Imaginary interfaces,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202100769
dc.rights.note有償授權
dc.date.accepted2021-03-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-0303202110353100.pdf
  未授權公開取用
31.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved