Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74094
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鄭益謙(Ivan-Chen Cheng)
dc.contributor.authorChieh-Li Liuen
dc.contributor.author劉玠澧zh_TW
dc.date.accessioned2021-06-17T08:19:42Z-
dc.date.available2024-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation甘昀騏2012。抗口蹄疫病毒結構蛋白VP1單源抗體應用於酵素連結免疫吸附試驗。國立臺灣
大學獸醫學研究所碩士論文,台北市。
李恆瑋2016。以抗Site 2單源抗體與口蹄疫類病毒空殼蛋白建構阻斷型ELISA對免疫動物進
行血清學監控。國立臺灣大學獸醫學研究所碩士論文,台北市。
Abrams, C. C., King, A. M., & Belsham, G. J. (1995). Assembly of foot-and-mouth disease virus empty capsids synthesized by a vaccinia virus expression system. J Gen Virol, 76 ( Pt 12), 3089-3098. doi:10.1099/0022-1317-76-12-3089
Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D., & Brown, F. (1989). The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature, 337(6209), 709-716. doi:10.1038/337709a0
Aggarwal, N., & Barnett, P. V. (2002). Antigenic sites of foot-and-mouth disease virus (FMDV): an analysis of the specificities of anti-FMDV antibodies after vaccination of naturally susceptible host species. J Gen Virol, 83(Pt 4), 775-782. doi:10.1099/0022-1317-83-4-775
Aktas, S., & Samuel, A. R. (2000). Identification of antigenic epitopes on the foot and mouth disease virus isolate O1/Manisa/Turkey/69 using monoclonal antibodies. Rev Sci Tech, 19(3), 744-753. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11107617
Alexandersen, S., & Donaldson, A. I. (2002). Further studies to quantify the dose of natural aerosols of foot-and-mouth disease virus for pigs. Epidemiology and Infection, 128(2), 313-323. doi:10.1017/S0950268801006501
Alexandersen, S., Quan, M., Murphy, C., Knight, J., & Zhang, Z. (2003). Studies of quantitative parameters of virus excretion and transmission in pigs and cattle experimentally infected with foot-and-mouth disease virus. J Comp Pathol, 129(4), 268-282. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14554125
Asfor, A. S., Upadhyaya, S., Knowles, N. J., King, D. P., Paton, D. J., & Mahapatra, M. (2014). Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus. J Gen Virol, 95(Pt 5), 1104-1116. doi:10.1099/vir.0.060939-0
Balbas, P. (2001). Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Mol Biotechnol, 19(3), 251-267. doi:10.1385/MB:19:3:251
Barnett, P. V., Ouldridge, E. J., Rowlands, D. J., Brown, F., & Parry, N. R. (1989). Neutralizing epitopes of type O foot-and-mouth disease virus. I. Identification and characterization of three functionally independent, conformational sites. J Gen Virol, 70 ( Pt 6), 1483-1491. doi:10.1099/0022-1317-70-6-1483
Barnett, P. V., Samuel, A. R., Pullen, L., Ansell, D., Butcher, R. N., & Parkhouse, R. M. (1998). Monoclonal antibodies, against O1 serotype foot-and-mouth disease virus, from a natural bovine host, recognize similar antigenic features to those defined by the mouse. J Gen Virol, 79 ( Pt 7), 1687-1697. doi:10.1099/0022-1317-79-7-1687
Basagoudanavar, S. H., Hosamani, M., Tamil Selvan, R. P., Sreenivasa, B. P., Saravanan, P., Chandrasekhar Sagar, B. K., & Venkataramanan, R. (2013). Development of a liquid-phase blocking ELISA based on foot-and-mouth disease virus empty capsid antigen for seromonitoring vaccinated animals. Archives of Virology, 158(5), 993-1001. doi:10.1007/s00705-012-1567-5
Belsham, G. J. (1993). Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Prog Biophys Mol Biol, 60(3), 241-260. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8396787
Belsham, G. J., Abrams, C. C., King, A. M., Roosien, J., & Vlak, J. M. (1991). Myristoylation of foot-and-mouth disease virus capsid protein precursors is independent of other viral proteins and occurs in both mammalian and insect cells. J Gen Virol, 72 ( Pt 3), 747-751. doi:10.1099/0022-1317-72-3-747
Belsham, G. J., McInerney, G. M., & Ross-Smith, N. (2000). Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol, 74(1), 272-280. doi:10.1128/jvi.74.1.272-280.2000
Brinkmann, U., Mattes, R. E., & Buckel, P. (1989). High-Level Expression of Recombinant Genes in Escherichia-Coli Is Dependent on the Availability of the Dnay Gene-Product. Gene, 85(1), 109-114. doi:Doi 10.1016/0378-1119(89)90470-8
Brown, F., & Cartwright, B. (1961). Dissociation of foot-and-mouth disease virus into its nucleic acid and protein components. Nature, 192, 1163-1164. doi:10.1038/1921163a0
Bunch, T., Rieder, E., & Mason, P. (1994). Sequence of the S fragment of foot-and-mouth disease virus type A12. Virus Genes, 8(2), 173-175. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8073639
Callahan, J. D., Brown, F., Csorio, F. A., Sur, J. H., Kramer, E., Long, G. W., . . . Nelson, W. M. (2002). Use of a portable real-time reverse transcriptase-polymerase chain reaction assay for rapid detection of foot-and-mouth disease virus. Journal of the American Veterinary Medical Association, 220(11), 1636-1642. doi:DOI 10.2460/javma.2002.220.1636
Cao, Y., Zhou, W., Xing, X., Zhang, J., Fu, Y., Li, K., . . . Liu, Z. (2018). Indirect ELISA using a multi-epitope recombinant protein to detect antibodies against foot-and-mouth disease virus serotype O in pigs. J Virol Methods, 262, 26-31. doi:10.1016/j.jviromet.2018.09.008
Cheng, I. C., Liang, S. M., Tu, W. J., Chen, C. M., Lai, S. Y., Cheng, Y. C., . . . Jong, M. H. (2006). Study on the porcinophilic foot-and-mouth disease virus I. production and characterization of monoclonal antibodies against VP1. J Vet Med Sci, 68(8), 859-864. doi:10.1292/jvms.68.859
Choi, V. W., Asokan, A., Haberman, R. A., McCown, T. J., & Samulski, R. J. (2006). Production of recombinant adeno-associated viral vectors and use for in vitro and in vivo administration. Curr Protoc Neurosci, Chapter 4, Unit 4 17. doi:10.1002/0471142301.ns0417s35
Coetzer, J. A. W., Thomson, G. R., & Tustin, R. C. (1994). Infectious diseases of livestock with special reference to Southern Africa. Cape Town ; New York: Oxford University Press.
De Marco, V., Stier, G., Blandin, S., & de Marco, A. (2004). The solubility and stability of recombinant proteins are increased by their fusion to NusA. Biochem Biophys Res Commun, 322(3), 766-771. doi:10.1016/j.bbrc.2004.07.189
Donaldson, A. I. (1987). Foot-and-Mouth-Disease - the Principal Features. Irish Veterinary Journal, 41(9), 325-327. Retrieved from <Go to ISI>://WOS:A1987K837400001
Dukes, J. P., King, D. P., & Alexandersen, S. (2006). Novel reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus. Archives of Virology, 151(6), 1093-1106. doi:10.1007/s00705-005-0708-5
Ellard, F. M., Drew, J., Blakemore, W. E., Stuart, D. I., & King, A. M. (1999). Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol, 80 ( Pt 8), 1911-1918. doi:10.1099/0022-1317-80-8-1911
Ferris, N. P., & Dawson, M. (1988). Routine application of enzyme-linked immunosorbent assay in comparison with complement fixation for the diagnosis of foot-and-mouth and swine vesicular diseases. Vet Microbiol, 16(3), 201-209. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3376418
Fox, G., Parry, N. R., Barnett, P. V., Mcginn, B., Rowlands, D. J., & Brown, F. (1989). The Cell Attachment Site on Foot-and-Mouth-Disease Virus Includes the Amino-Acid Sequence Rgd (Arginine-Glycine-Aspartic Acid). Journal of General Virology, 70, 625-637. doi:Doi 10.1099/0022-1317-70-3-625
Fuerst, T. R., Niles, E. G., Studier, F. W., & Moss, B. (1986). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A, 83(21), 8122-8126. doi:10.1073/pnas.83.21.8122
Gao, Y., Sun, S. Q., & Guo, H. C. (2016). Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements. Virol J, 13, 107. doi:10.1186/s12985-016-0561-z
Golding, S. M., Hedger, R. S., & Talbot, P. (1976). Radial immuno-diffusion and serum-neutralisation techniques for the assay of antibodies to swine vesicular disease. Res Vet Sci, 20(2), 142-147. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/178035
Grazioli, S., Fallacara, F., & Brocchi, E. (2013). Mapping of antigenic sites of foot-and-mouth disease virus serotype Asia 1 and relationships with sites described in other serotypes. J Gen Virol, 94(Pt 3), 559-569. doi:10.1099/vir.0.048249-0
Grubman, M. J., & Baxt, B. (2004). Foot-and-mouth disease. Clin Microbiol Rev, 17(2), 465-493. doi:10.1128/cmr.17.2.465-493.2004
Grubman, M. J., Lewis, S. A., & Morgan, D. O. (1993). Protection of swine against foot-and-mouth disease with viral capsid proteins expressed in heterologous systems. Vaccine, 11(8), 825-829. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8395128
Grubman, M. J., Segundo, F. D. S., Dias, C. C. A., Moraes, M. P., Perez-Martin, E., & de los Santos, T. (2012). Use of replication-defective adenoviruses to develop vaccines and biotherapeutics against foot-and-mouth disease. Future Virology, 7(8), 767-778. doi:10.2217/Fvl.12.65
Gullberg, M., Muszynski, B., Organtini, L. J., Ashley, R. E., Hafenstein, S. L., Belsham, G. J., & Polacek, C. (2013). Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells. Journal of General Virology, 94, 1769-1779. doi:10.1099/vir.0.054122-0
Gullberg, M., Polacek, C., Botner, A., & Belsham, G. J. (2013). Processing of the VP1/2A junction is not necessary for production of foot-and-mouth disease virus empty capsids and infectious viruses: characterization of 'self-tagged' particles. J Virol, 87(21), 11591-11603. doi:10.1128/JVI.01863-13
Guo, H. C., Sun, S. Q., Jin, Y., Yang, S. L., Wei, Y. Q., Sun, D. H., . . . Liu, D. X. (2013). Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle. Vet Res, 44, 48. doi:10.1186/1297-9716-44-48
Hamblin, C., Armstrong, R. M., & Hedger, R. S. (1984). A rapid enzyme-linked immunosorbent assay for the detection of foot-and-mouth disease virus in epithelial tissues. Vet Microbiol, 9(5), 435-443. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6093338
Hamblin, C., Barnett, I. T., & Crowther, J. R. (1986). A new enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against foot-and-mouth disease virus. II. Application. J Immunol Methods, 93(1), 123-129. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3021855
Hamblin, C., Barnett, I. T., & Hedger, R. S. (1986). A new enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against foot-and-mouth disease virus. I. Development and method of ELISA. J Immunol Methods, 93(1), 115-121. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3021854
Harris, T. J., & Brown, F. (1977). Biochemical analysis of a virulent and an avirulent strain of foot-and-mouth disease virus. J Gen Virol, 34(1), 87-105. doi:10.1099/0022-1317-34-1-87
Hughes, G. J., Mioulet, V., Kitching, R. P., Woolhouse, M. E., Alexandersen, S., & Donaldson, A. I. (2002). Foot-and-mouth disease virus infection of sheep: implications for diagnosis and control. Vet Rec, 150(23), 724-727. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12081308
Ikura, K., Kokubu, T., Natsuka, S., Ichikawa, A., Adachi, M., Nishihara, K., . . . Utsumi, S. (2002). Co-overexpression of folding modulators improves the solubility of the recombinant guinea pig liver transglutaminase expressed in Escherichia coli. Preparative Biochemistry & Biotechnology, 32(2), 189-205. doi:Doi 10.1081/Pb-120004130
Jackson, T., Blakemore, W., Newman, J. W., Knowles, N. J., Mould, A. P., Humphries, M. J., & King, A. M. (2000). Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin alpha5beta1: influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J Gen Virol, 81(Pt 5), 1383-1391. doi:10.1099/0022-1317-81-5-1383
Jackson, T., Clark, S., Berryman, S., Burman, A., Cambier, S., Mu, D., . . . King, A. M. (2004). Integrin alphavbeta8 functions as a receptor for foot-and-mouth disease virus: role of the beta-chain cytodomain in integrin-mediated infection. J Virol, 78(9), 4533-4540. doi:10.1128/jvi.78.9.4533-4540.2004
Jackson, T., King, A. M., Stuart, D. I., & Fry, E. (2003). Structure and receptor binding. Virus Res, 91(1), 33-46. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12527436
Jackson, T., Mould, A. P., Sheppard, D., & King, A. M. (2002). Integrin alphavbeta1 is a receptor for foot-and-mouth disease virus. J Virol, 76(3), 935-941. doi:10.1128/jvi.76.3.935-941.2002
Jackson, T., Sheppard, D., Denyer, M., Blakemore, W., & King, A. M. (2000). The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. J Virol, 74(11), 4949-4956. doi:10.1128/jvi.74.11.4949-4956.2000
Jenny, R. J., Mann, K. G., & Lundblad, R. L. (2003). A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif, 31(1), 1-11. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12963335
Khan, K. H. (2013). Gene expression in Mammalian cells and its applications. Adv Pharm Bull, 3(2), 257-263. doi:10.5681/apb.2013.042
Kim, D. W., Uetsuki, T., Kaziro, Y., Yamaguchi, N., & Sugano, S. (1990). Use of the Human Elongation Factor-1-Alpha Promoter as a Versatile and Efficient Expression System. Gene, 91(2), 217-223. doi:Doi 10.1016/0378-1119(90)90091-5
Kishi, A., Nakamura, T., Nishio, Y., Maegawa, H., & Kashiwagi, A. (2003). Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation. Am J Physiol Endocrinol Metab, 284(4), E830-840. doi:10.1152/ajpendo.00390.2002
Kitson, J. D., McCahon, D., & Belsham, G. J. (1990). Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology, 179(1), 26-34. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1699353
Lawrence, P., LaRocco, M., Baxt, B., & Rieder, E. (2013). Examination of soluble integrin resistant mutants of foot-and-mouth disease virus. Virology Journal, 10. doi:Artn 2
10.1186/1743-422x-10-2
Lawrence, P., Pacheco, J., Stenfeldt, C., Arzt, J., Rai, D. K., & Rieder, E. (2016). Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: Impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation. Virology, 492, 108-117. doi:10.1016/j.virol.2016.02.004
Lawrence, P., Rai, D., Conderino, J. S., Uddowla, S., & Rieder, E. (2016). Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of CD foot-and-mouth disease virus. Virology, 492, 38-52. doi:10.1016/j.virol.2016.02.005
Lee, C. D., Sun, H. C., Hu, S. M., Chiu, C. F., Homhuan, A., Liang, S. M., . . . Wang, T. F. (2008). An improved SUMO fusion protein system for effective production of native proteins. Protein Sci, 17(7), 1241-1248. doi:10.1110/ps.035188.108
Lee, C. D., Yan, Y. P., Liang, S. M., & Wang, T. F. (2009). Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli. J Biomed Sci, 16, 69. doi:10.1186/1423-0127-16-69
Lee, H. W., Deng, M. C., Pan, C. H., Chang, H. W., & Cheng, I. C. (2018). Neutralizing monoclonal antibodies against porcinophilic foot-and-mouth disease virus mapped to antigenic site 2 by utilizing novel mutagenic virus-like particles to detect the antigenic change. Vet Microbiol, 222, 124-131. doi:10.1016/j.vetmic.2018.06.002
Li, X., Liu, R., Tang, H., Jin, M., Chen, H., & Qian, P. (2008). Induction of protective immunity in swine by immunization with live attenuated recombinant pseudorabies virus expressing the capsid precursor encoding regions of foot-and-mouth disease virus. Vaccine, 26(22), 2714-2722. doi:10.1016/j.vaccine.2008.03.020
Li, Z., Yi, Y., Yin, X., Zhang, Y., Liu, M., Liu, H., . . . Liu, J. (2012). Development of a foot-and-mouth disease virus serotype A empty capsid subunit vaccine using silkworm (Bombyx mori) pupae. PLoS One, 7(8), e43849. doi:10.1371/journal.pone.0043849
Liu, H., Xue, Q., Zeng, Q., Zhu, Z., & Zheng, H. (2017). The Kinase STK3 Interacts with the Viral Structural Protein VP1 and Inhibits Foot-and-Mouth Disease Virus Replication. Biomed Res Int, 2017, 2481348. doi:10.1155/2017/2481348
Mackay, D. K., Bulut, A. N., Rendle, T., Davidson, F., & Ferris, N. P. (2001). A solid-phase competition ELISA for measuring antibody to foot-and-mouth disease virus. J Virol Methods, 97(1-2), 33-48. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11483215
Mahapatra, M., Hamblin, P., & Paton, D. J. (2012). Foot-and-mouth disease virus epitope dominance in the antibody response of vaccinated animals. J Gen Virol, 93(Pt 3), 488-493. doi:10.1099/vir.0.037952-0
Malakhov, M. P., Mattern, M. R., Malakhova, O. A., Drinker, M., Weeks, S. D., & Butt, T. R. (2004). SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics, 5(1-2), 75-86. doi:10.1023/B:JSFG.0000029237.70316.52
Mason, P. W., Rieder, E., & Baxt, B. (1994). Rgd Sequence of Foot-and-Mouth-Disease Virus Is Essential for Infecting Cells Via the Natural Receptor but Can Be Bypassed by an Antibody-Dependent Enhancement Pathway. Proceedings of the National Academy of Sciences of the United States of America, 91(5), 1932-1936. doi:DOI 10.1073/pnas.91.5.1932
Mateu, M. G., Escarmis, C., & Domingo, E. (1998). Mutational analysis of discontinuous epitopes of foot-and-mouth disease virus using an unprocessed capsid protomer precursor. Virus Research, 53(1), 27-37. doi:Doi 10.1016/S0168-1702(97)00127-5
Mayr, G. A., Chinsangaram, J., & Grubman, M. J. (1999). Development of replication-defective adenovirus serotype 5 containing the capsid and 3C protease coding regions of foot-and-mouth disease virus as a vaccine candidate. Virology, 263(2), 496-506. doi:10.1006/viro.1999.9940
Mayr, G. A., O'Donnell, V., Chinsangaram, J., Mason, P. W., & Grubman, M. J. (2001). Immune responses and protection against foot-and-mouth disease virus (FMDV) challenge in swine vaccinated with adenovirus-FMDV constructs. Vaccine, 19(15-16), 2152-2162. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11228388
Mccahon, D., Crowther, J. R., Belsham, G. J., Kitson, J. D. A., Duchesne, M., Have, P., . . . Desimone, F. (1989). Evidence for at Least 4 Antigenic Sites on Type-O Foot-and-Mouth-Disease Virus Involved in Neutralization - Identification by Single and Multiple Site Monoclonal Antibody-Resistant Mutants. Journal of General Virology, 70, 639-645. doi:Doi 10.1099/0022-1317-70-3-639
Newton, S. E., Carroll, A. R., Campbell, R. O., Clarke, B. E., & Rowlands, D. J. (1985). The sequence of foot-and-mouth disease virus RNA to the 5' side of the poly(C) tract. Gene, 40(2-3), 331-336. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3007298
Paborsky, L. R., Fendly, B. M., Fisher, K. L., Lawn, R. M., Marks, B. J., McCray, G., . . . Gorman, C. M. (1990). Mammalian cell transient expression of tissue factor for the production of antigen. Protein Eng, 3(6), 547-553. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2164668
Pope, B., & Kent, H. M. (1996). High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Research, 24(3), 536-537. doi:DOI 10.1093/nar/24.3.536
Porta, C., Kotecha, A., Burman, A., Jackson, T., Ren, J., Loureiro, S., . . . Charleston, B. (2013). Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. PLoS Pathog, 9(3), e1003255. doi:10.1371/journal.ppat.1003255
Prinz, W. A., Aslund, F., Holmgren, A., & Beckwith, J. (1997). The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem, 272(25), 15661-15667. doi:10.1074/jbc.272.25.15661
Pryor, K. D., & Leiting, B. (1997). High-level expression of soluble protein in Escherichia coli using a His6-tag and maltose-binding-protein double-affinity fusion system. Protein Expr Purif, 10(3), 309-319. doi:10.1006/prep.1997.0759
Ran, X., Yang, Z., Bai, M., Zhang, Y., Wen, X., Guo, H., & Sun, S. (2019). Development and validation of a competitive ELISA based on bacterium-original virus-like particles of serotype O foot-and-mouth disease virus for detecting serum antibodies. Appl Microbiol Biotechnol, 103(7), 3015-3024. doi:10.1007/s00253-019-09680-8
Reid, S. M., Ferris, N. P., Hutchings, G. H., Zhang, Z. D., Belsham, G. J., & Alexandersen, S. (2002). Detection of all seven serotypes of foot-and-mouth disease virus by real-time, fluorogenic reverse transcription polymerase chain reaction assay. Journal of Virological Methods, 105(1), 67-80. doi:Pii S0166-0934(02)00081-2
Doi 10.1016/S0166-0934(02)00081-2
Reid, S. M., Mioulet, V., Knowles, N. J., Shirazi, N., Belsham, G. J., & King, D. P. (2014). Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East. Journal of Virological Methods, 207, 146-153. doi:10.1016/j.jviromet.2014.07.002
Rincon, V., Rodriguez-Huete, A., & Mateu, M. G. (2015). Different functional sensitivity to mutation at intersubunit interfaces involved in consecutive stages of foot-and-mouth disease virus assembly. J Gen Virol, 96(9), 2595-2606. doi:10.1099/vir.0.000187
Rowlands, D. J., Sangar, D. V., & Brown, F. (1975). A comparative chemical and serological study of the full and empty particles of foot-and mouth disease virus. J Gen Virol, 26(3), 227-238. doi:10.1099/0022-1317-26-3-227
Rozkov, A., & Enfors, S. O. (2004). Analysis and control of proteolysis of recombinant proteins in Escherichia coli. Adv Biochem Eng Biotechnol, 89, 163-195. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15217159
Sa-Carvalho, D., Rieder, E., Baxt, B., Rodarte, R., Tanuri, A., & Mason, P. W. (1997). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol, 71(7), 5115-5123. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9188578
Samuel, A. R., Knowles, N. J., Samuel, G. D., & Crowther, J. R. (1991). Evaluation of a trapping ELISA for the differentiation of foot-and-mouth disease virus strains using monoclonal antibodies. Biologicals, 19(4), 299-310. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1665700
Schutta, C., Barrera, J., Pisano, M., Zsak, L., Grubman, M. J., Mayr, G. A., . . . Neilan, J. G. (2016). Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge. Vaccine, 34(27), 3214-3220. doi:10.1016/j.vaccine.2015.12.018
Sezonov, G., Joseleau-Petit, D., & D'Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth. Journal of Bacteriology, 189(23), 8746-8749. doi:10.1128/Jb.01368-07
Shaw, A. E., Reid, S. M., Ebert, K., Hutchings, G. H., Ferris, N. P., & King, D. P. (2007). Implementation of a one-step real-time RT-PCR protocol for diagnosis of foot-and-mouth disease. J Virol Methods, 143(1), 81-85. doi:10.1016/j.jviromet.2007.02.009
Shiloach, J., & Fass, R. (2005). Growing E-coli to high cell density - A historical perspective on method development. Biotechnology Advances, 23(5), 345-357. doi:10.1016/j.biotechadv.2005.04.004
Smitsaart, E. N., Saiz, J. C., Yedloutschnig, R. J., & Morgan, D. O. (1990). Detection of foot-and-mouth disease virus by competitive ELISA using a monoclonal antibody specific for the 12S protein subunit from six of the seven serotypes. Vet Immunol Immunopathol, 26(3), 251-265. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1702246
Veerapen, V. P., van Zyl, A. R., Wigdorovitz, A., Rybicki, E. P., & Meyers, A. E. (2018). Novel expression of immunogenic foot-and-mouth disease virus-like particles in Nicotiana benthamiana. Virus Res, 244, 213-217. doi:10.1016/j.virusres.2017.11.027
Vidal, M., Cairo, J., Mateu, M. G., & Villaverde, A. (1991). Molecular cloning and expression of the VP1 gene of foot-and-mouth disease virus C1 in E. coli: effect on bacterial cell viability. Appl Microbiol Biotechnol, 35(6), 788-792. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1369359
Wang, C., Castro, A. F., Wilkes, D. M., & Altenberg, G. A. (1999). Expression and purification of the first nucleotide-binding domain and linker region of human multidrug resistance gene product: comparison of fusions to glutathione S-transferase, thioredoxin and maltose-binding protein. Biochem J, 338 ( Pt 1), 77-81. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9931301
Wang, J. H., Liang, C. M., Peng, J. M., Shieh, J. J., Jong, M. H., Lin, Y. L., . . . Liang, S. M. (2003). Induction of immunity in swine by purified recombinant VP1 of foot-and-mouth disease virus. Vaccine, 21(25-26), 3721-3729. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12922103
Xiao, Y., Chen, H. Y., Wang, Y., Yin, B., Lv, C., Mo, X., . . . Tian, K. (2016). Large-scale production of foot-and-mouth disease virus (serotype Asia1) VLP vaccine in Escherichia coli and protection potency evaluation in cattle. BMC Biotechnol, 16(1), 56. doi:10.1186/s12896-016-0285-6
Xie, Q. C., McCahon, D., Crowther, J. R., Belsham, G. J., & McCullough, K. C. (1987). Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J Gen Virol, 68 ( Pt 6), 1637-1647. doi:10.1099/0022-1317-68-6-1637
Yang, M., Xu, W., Goolia, M., & Zhang, Z. (2014). Characterization of monoclonal antibodies against foot-and-mouth disease virus serotype O and application in identification of antigenic variation in relation to vaccine strain selection. Virol J, 11, 136. doi:10.1186/1743-422X-11-136
Yang, P. C., Chu, R. M., Chung, W. B., & Sung, H. T. (1999). Epidemiological characteristics and financial costs of the 1997 foot-and-mouth disease epidemic in Taiwan. Vet Rec, 145(25), 731-734. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10972111
Zhang, W., Yang, F., Zhu, Z., Yang, Y., Wang, Z., Cao, W., . . . Zheng, H. (2019). Cellular DNAJA3, a Novel VP1-Interacting Protein, Inhibits Foot-and-Mouth Disease Virus Replication by Inducing Lysosomal Degradation of VP1 and Attenuating Its Antagonistic Role in the Beta Interferon Signaling Pathway. J Virol, 93(13). doi:10.1128/JVI.00588-19
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74094-
dc.description.abstract口蹄疫病毒(Foot-and-mouth disease virus, FMDV)為無封套病毒,以正二十面體的外殼蛋白包覆一條正向單股RNA作為遺傳物質。由於其廣泛的宿主種別和具有高度的傳染性,使口蹄疫的防檢疫倍受各國政府重視並制定諸多措施防範。台灣曾於1997年爆發嚴重的口蹄疫情,僅該年度就造成約3.78億美元的損失。時至今日台灣仍未正式恢復口蹄疫非疫區的地位,加上鄰國潛在的傳播威脅,擁有一套可供快速、大量處理血清抗體的診斷平台對於防檢疫無疑都具極大助益。本研究利用knock-out mutagenesis技術與類病毒空殼蛋白(VLPs)從實驗室既有的FMDV融合瘤中篩檢能夠識別O型口蹄疫病毒中和抗體決定位的單源抗體(MAb),考量不須操作活病毒與能兼顧抗原真實性的前提,最終使用哺乳動物細胞表現VLPs作為抗原,結合過去所篩選出的抗Site 1與Site 2 MAb,建構blocking ELSIA,復以此系統對經家畜衛生試驗所測定中和抗體力價(Serum neutralizing titer, SN titer)的97隻豬血清進行測試,結果顯示此系統與SN titer展現極高的關聯性,以抗Site 1 MAb作為tracer其相關性達到R2=0.67,在抗Site 2 MAb則為R2=0.63。根據上述結果,擬進一步拓展其應用性,結合以E.coli所生產SUMO fusion蛋白的VLPs作為抗原,藉以提升產量及降低成本,並透過大量血清樣品的測試,及生物統計分析對發揮更優化的效果,期許有朝一日能將此blocking ELISA實際應用於口蹄疫防檢疫的血清檢測。zh_TW
dc.description.abstractFoot-and-mouth disease virus (FMDV) is a non-enveloped virus with an icosahedral capsid containing a positive-sense single-strand RNA. Due to its wide host range and highly contagious activity, FMD is one of the most important diseases in animal husbandry industry in the world. In 1997, a devastating outbreak of FMD in Taiwan caused losses of about US$ 378 million. Until now, FMD has not been fully eradicated in Taiwan. Hence, the establishment of a fast and stable platform for massive serologic test as a tool of prevention and control measure is undoubtedly necessary. Recently, site 1 and site 2 have been regarded as the most immune-dominant neutralization sites. In order to use monoclonal antibodies (MAbs) specifically against the well-known neutralization sites from a previously produced MAbs panel, we established a screening system based on mutated Virus-like-particles (VLPs), which alleviates biosecurity concerns that viruses pose. Due to authentic antigenicity, the mammalian cell expression system, HTK, was chosen as the antigen for the MAb-based antibody blocking ELISA (bELISA). Preliminary results showed that the PI value of the bELISA tested on 97 swine serums exhibited high correlation to SN titer, with R2 values of 0.67 and 0.63 in site 1 and site 2, respectively. Considering cost and application, we intend to express our VLPs with SUMO fusion protein in E.coli, the more productive expression system. With further optimization, we believe that this bELISA platform we have established could not only be used for FMD researching, but also as a practical serological tool for FMD monitoring and prevention.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:19:42Z (GMT). No. of bitstreams: 1
ntu-108-R05629010-1.pdf: 6213765 bytes, checksum: 134e8ccb97bc06afd787617a95eeb713 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目 錄
口試委員會審定書 i
中文摘要 ii
英文摘要 iii
第一章 序言 1
第二章 文獻回顧 4
第一節 台灣口蹄疫發展歷史 4
第二節 口蹄疫病毒介紹 5
2-2.1 病毒結構蛋白 6
2-2.2 中和抗原決定位(Neutralizing sties) 7
第三節 FMD臨床症狀、傳播方式即診斷方法 8
2-3.1 臨床症狀 8
2-3.2 傳播方式 8
2-3.3 診斷方法 9
2.3.3.1 病毒分離(Virus isolation) 9
2-3.3.2 血清中和試驗(Serum neutralization test, SN test) 9
2-3.3.3 酵素連結免疫吸附試驗(Enzyme-Link Immunosorbent Assay,ELISA) 9
2-3.3.4 反轉錄定量聚合酶連鎖反應(Reverse Transcription
-Polymerase Chain Reaction, RT-PCR) 10
第四節 類病毒空殼蛋白及突變策略 11
第五節 重組蛋白表現系統 12
2-5.1 真核細胞表現系統 12
2-5.2 原核細胞表現系統 13
第三章 材料與方法 15
第一節 質體建構 15
3-1.1 pcDNA-His-VP0、pcDNA-His-VP3、pcDNA-His-VP1質體建構 15
3-1.1.1 聚合酶連鎖反應(PCR)增幅VP0、VP3、VP1基因 15
3-1.1.2 PCR產物濃縮純化(DNA clean & concentration, DCC) 16
3-1.1.3 Restriction Enzyme Digestion 17
3-1.1.4 Sticky-end ligation and transformation 17
3-1.1.5 Colony PCR 18
3-1.2 pcDNA-P1 5M點突變實驗 19
第二節 重組蛋白表現 21
3-2.1 Transient expression抗原表現 21
3-2.2 VLPs抗原大量表現21
3-3.3 Sucrose gradient ultracentrifuge純化VLPs與鑑定 21
3-2.3.1 Sucrose gradient ultracentrifuge分離promoter、pentamer及VLPs 21
3-2.3.2 VLPs-based sandwich ELISA 22
3-2.3.3 VLPs-based direct ELISA 22
3-2.3.4十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(Sodium dodecyl sulfate
-polyacrylamide gel electrophoresis, SDS-PAGE) 23
3-2.3.5西方墨點法 (Western blot, WB) 23
第三節 抗口蹄疫(FMD)單源抗體(MAb)特性鑑定 24
3-3.1 免疫螢光染色 (Immunofluorescene assay, IFA) 24
3-3.2 抗口蹄疫次單元(subunit protein)單源抗體鑑定 24
3-3.3 抗口蹄疫中和單源抗體識別neutralizing sites鑑定 24
3-3.4 抗O99 VLPs單源抗體鑑定 24
3-3.5 以Sucrose gradient fraction篩檢識別Virus-like-particles構形單源抗體 25
3-3.6 單源抗體Site 1與Site 2 steric effect比較 25
第四節 抗口蹄疫(FMD)阻斷型酵素連結免疫吸附法(bELISA)建立 26
3-4.1 單源抗體腹水純化 26
3-4.2 純化抗體蛋白定量 26
3-4.3 標定HRP (Horseradish peroxidase)純化抗體Tracer製備 26
3-4.4 Capture Ab篩選及血清量最優化 27
3-4.5 VLPs-based blocking ELISA與大量血清樣品測試 27
第五節 E. coli表現重組蛋白 28
3-5.1 pET-SUMO-VP0、pET-SUMO-VP3及pET-SUMO-VP1表現質體建構 28
3-5.2 TA cloning 28
3-5.3 SUMO重組蛋白表現 29
3-5.4超音波破菌 29
3-5.5表現重組蛋白純化 30
3-5.6重組蛋白移除SUMO fusion protein 30
第六節 其他實驗常用生物材料製備 31
3-5.1 重組牛痘病毒(T7)製備 31
3-5.2 勝任細胞製備 31
3-5.3 大量質體DNA萃取 32
第四章 結果 33
第一節 質體建構 33
4-1.1 PCR增幅His-VP0、His-VP3、His-VP1基因片段 33
4-1.2 pcDNA-His-VP0、pcDNA-His-VP3、pcDNA-His-VP1質體建構 33
4-1.3 5M突變pcDNA-mP1質體建構 33
第二節 重組抗原表現 34
4-2.1 His-VP0、His-VP3、His-VP1重組蛋白表現確認 34
4-2.2表現VLPs抗原sucrose gradient確認 34
第三節 口蹄疫單源抗體特性鑑定 34
4-3.1 抗口蹄疫次單元(subunit protein)單源抗體鑑定 35
4-3.2抗口蹄疫中和單源抗體辨識neutralizing sites鑑定 35
4-3.3 抗O/KM/99 (O99) VLPs單源抗體鑑定 36
4-3.4 識別Virus-like-particles構形單源抗體篩選 36
4-3.5單源抗體Site 1與Site 2 steric effect比較 37
第四節 VLPs-based blocking ELISA檢測系統建立 38
4-4.1 Capture Ab篩選及血清量最優化 38
4-4.2 少量血清樣品測試 38
4-4.3 大量血清樣品測試 39
第五節 E.coli表現重組蛋白 39
4-5.1 pET-SUMO-VP0、pET-SUMO-VP3、pET-SUMO-VP1與質體建構 39
4-5.2 pET-SUMO-VP0、pET-SUMO-VP3、pET-SUMO-VP1抗原表現 39
4-5.3 pET-SUMO-VP0、pET-SUMO-VP3、pET-SUMO-VP1純化40
4-5.4純化抗原SUMO protease酶切 41
第五章 討論42
第一節 單源抗體特性鑑定 43
5-1.1 抗口蹄疫次單元(subunit protein)單源抗體鑑定 43
5-1.2 抗口蹄疫中和單源抗體識別neutralizing sites鑑定 45
5-1.3 抗O99 VLPs單源抗體鑑定 47
第二節VLPs-based blocking ELISA建立 47
第三節 E.coli表現重組蛋白 50
第四節 結論 52
參考文獻 88
附錄 97
dc.language.isozh-TW
dc.subject口蹄疫zh_TW
dc.subject中和抗體決定位zh_TW
dc.subject單源抗體zh_TW
dc.subjectSUMO fusion蛋白zh_TW
dc.subject阻斷型酵素連結免疫吸附試驗zh_TW
dc.subjectMonoclonal Antibodyen
dc.subjectFoot-and-Mouth Disease Virusen
dc.subjectNeutralization Siteen
dc.subjectBlocking ELISAen
dc.subjectSUMO Fusion Proteinen
dc.title以抗Site 1/Site 2單源抗體結合SUMO fusion蛋白所表現的口蹄疫類病毒空殼蛋白建構阻斷型ELISAzh_TW
dc.titleAdvanced Development of FMDV Blocking ELISA based on Site1/Site2 MAbs and VLP Expressed by SUMO Fusion Proteinen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊平政,張惠雯,王金和,陳世平,潘居祥
dc.subject.keyword口蹄疫,中和抗體決定位,單源抗體,SUMO fusion蛋白,阻斷型酵素連結免疫吸附試驗,zh_TW
dc.subject.keywordFoot-and-Mouth Disease Virus,Neutralization Site,Monoclonal Antibody,SUMO Fusion Protein,Blocking ELISA,en
dc.relation.page100
dc.identifier.doi10.6342/NTU201900694
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
Appears in Collections:獸醫學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
6.07 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved