Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74065
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏齡
dc.contributor.authorWei-Ting Syuen
dc.contributor.author徐瑋廷zh_TW
dc.date.accessioned2021-06-17T08:18:37Z-
dc.date.available2020-01-01
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citation1. Betts, J.G., et al., Anatomy and physiology. 2014.
2. Witt, J.C., et al., Carpal tunnel syndrome with normal nerve conduction studies. 2004. 29(4): p. 515-522.
3. Al‐Hashel, J.Y., et al., Sonography in carpal tunnel syndrome with normal nerve conduction studies. 2015. 51(4): p. 592-597.
4. Aseem, F., et al., Neuromuscular ultrasound in patients with carpal tunnel syndrome and normal nerve conduction studies. 2017. 55(6): p. 913-915.
5. Borire, A.A., et al., Sonographic differences in carpal tunnel syndrome with normal and abnormal nerve conduction studies. 2016. 34: p. 77-80.
6. Filius, A., et al., Multidimensional ultrasound imaging of the wrist: Changes of shape and displacement of the median nerve and tendons in carpal tunnel syndrome. 2015. 33(9): p. 1332-1340.
7. van Doesburg, M.H., et al., Transverse plane tendon and median nerve motion in the carpal tunnel: ultrasound comparison of carpal tunnel syndrome patients and healthy volunteers. 2012. 7(5): p. e37081.
8. Wang, Y., et al., Altered median nerve deformation and transverse displacement during wrist movement in patients with carpal tunnel syndrome. 2014. 21(4): p. 472-480.
9. Kass, M., A. Witkin, and D. Terzopoulos, Snakes: Active contour models. International journal of computer vision, 1988. 1(4): p. 321-331.
10. Mortensen, E.N. and W.A. Barrett. Intelligent scissors for image composition. in Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. 1995. ACM.
11. Vincent, L. and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991(6): p. 583-598.
12. Ohlander, R., K. Price, and D.R. Reddy, Picture segmentation using a recursive region splitting method. Computer Graphics and Image Processing, 1978. 8(3): p. 313-333.
13. Brice, C.R. and C.L. Fennema, Scene analysis using regions. Artificial intelligence, 1970. 1(3-4): p. 205-226.
14. Pavlidis, T. and Y.-T. Liow, Integrating region growing and edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990. 12(3): p. 225-233.
15. Comaniciu, D. and P. Meer, Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002(5): p. 603-619.
16. Bishop, C.M., Pattern recognition and machine learning. 2006: springer.
17. Boykov, Y.Y. and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. in Proceedings eighth IEEE international conference on computer vision. ICCV 2001. 2001. IEEE.
18. LeCun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. 86(11): p. 2278-2324.
19. Krizhevsky, A., I. Sutskever, and G.E. Hinton. Imagenet classification with deep convolutional neural networks. in Advances in neural information processing systems. 2012.
20. Russakovsky, O., et al., Imagenet large scale visual recognition challenge. International journal of computer vision, 2015. 115(3): p. 211-252.
21. Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
22. Szegedy, C., et al. Going deeper with convolutions. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
23. He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
24. Hu, Y., et al., Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Medical physics, 2019. 46(1): p. 215-228.
25. Long, J., E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
26. Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical image computing and computer-assisted intervention. 2015. Springer.
27. Yu, F. and V. Koltun, Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.
28. Lin, T.-Y., et al. Feature pyramid networks for object detection. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
29. Liu, S., et al., Deep learning in medical ultrasound analysis: A review. Engineering, 2019.
30. Madabhushi, A. and D.N. Metaxas, Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE transactions on medical imaging, 2003. 22(2): p. 155-169.
31. Liu, B., et al., Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance. Ultrasound in medicine & biology, 2009. 35(8): p. 1309-1324.
32. Cheng, H.-D., et al., Automated breast cancer detection and classification using ultrasound images: A survey. Pattern recognition, 2010. 43(1): p. 299-317.
33. Xiao, G., et al., Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Transactions on medical imaging, 2002. 21(1): p. 48-57.
34. Almajalid, R., et al. Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation. in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). 2018. IEEE.
35. Dice, L.R., Measures of the amount of ecologic association between species. Ecology, 1945. 26(3): p. 297-302.
36. Xian, M., Y. Zhang, and H.-D. Cheng, Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recognition, 2015. 48(2): p. 485-497.
37. Shan, J., H. Cheng, and Y. Wang, A novel segmentation method for breast ultrasound images based on neutrosophic l‐means clustering. Medical physics, 2012. 39(9): p. 5669-5682.
38. Hafiane, A., P. Vieyres, and A. Delbos, Deep learning with spatiotemporal consistency for nerve segmentation in ultrasound images. arXiv preprint arXiv:1706.05870, 2017.
39. Hafiane, A., P. Vieyres, and A. Delbos, Phase-based probabilistic active contour for nerve detection in ultrasound images for regional anesthesia. Computers in biology and medicine, 2014. 52: p. 88-95.
40. Martins, N., et al. Joint Capsule Segmentation in Ultrasound Images of the Metacarpophalangeal Joint using Convolutional Neural Networks. in 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG). 2019. IEEE.
41. Baka, N., S. Leenstra, and T. van Walsum, Ultrasound aided vertebral level localization for lumbar surgery. IEEE transactions on medical imaging, 2017. 36(10): p. 2138-2147.
42. Pourtaherian, A., et al., Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks. International journal of computer assisted radiology and surgery, 2018. 13(9): p. 1321-1333.
43. Arora, S., et al. Provable bounds for learning some deep representations. in International Conference on Machine Learning. 2014.
44. Xie, S., et al. Aggregated residual transformations for deep neural networks. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
45. Chollet, F. Xception: Deep learning with depthwise separable convolutions. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
46. Szegedy, C., et al. Rethinking the inception architecture for computer vision. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
47. Zhao, H., et al. Pyramid scene parsing network. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
48. Arganda-Carreras, I., et al., Crowdsourcing the creation of image segmentation algorithms for connectomics. Frontiers in neuroanatomy, 2015. 9: p. 142.
49. Everingham, M., et al., The pascal visual object classes (voc) challenge. 2010. 88(2): p. 303-338.
50. Zhou, B., et al., Semantic understanding of scenes through the ADE20K dataset. 2016: p. 1-20.
51. Cordts, M., et al. The cityscapes dataset for semantic urban scene understanding. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
52. Chen, L.-C., et al., Encoder-decoder with atrous separable convolution for semantic image segmentation. 2018.
53. Chen, L.-C., et al., Rethinking atrous convolution for semantic image segmentation. 2017.
54. He, K., et al. Mask r-cnn. in Proceedings of the IEEE international conference on computer vision. 2017.
55. Girshick, R., et al. Rich feature hierarchies for accurate object detection and semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
56. Girshick, R. Fast r-cnn. in Proceedings of the IEEE international conference on computer vision. 2015.
57. Ren, S., et al. Faster r-cnn: Towards real-time object detection with region proposal networks. in Advances in neural information processing systems. 2015.
58. Shin, H.-C., et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 2016. 35(5): p. 1285-1298.
59. Massa, F.a.G., Ross, maskrcnn-benchmark: Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch. 2018.
60. Everingham, M.a.V.G., L. and Williams, C. K. I. and Winn, J. and Zisserman, A., The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
61. Lin, T.-Y., et al. Microsoft coco: Common objects in context. in European conference on computer vision. 2014. Springer.
62. Wada, K., labelme: Image Polygonal Annotation with Python. 2016.
63. Russell, B.C., et al., LabelMe: a database and web-based tool for image annotation. 2008. 77(1-3): p. 157-173.
64. 林敬哲, 手部疾病之橫切與縱切面超音波影像序列的組織追蹤. 碩士論文,國立成功大學資訊工程學系, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74065-
dc.description.abstract腕部隧道症候群藉由超音波影像進行的研究必須要仰賴專業醫療人員手動去進行正中神經位置的圈選,耗費大量勞力、技術資源以及時間,且依賴人為觀測的參數以及專業醫療人員個人的經驗,缺乏客觀且全面性的評估,亦無法即時回饋給醫療人員。因此我們將藉由電腦視覺的技術來針對超音波影像進行處理。
考慮到資料蒐集的困難及運算的複雜度,我們縮限於單一影像的處理上,藉由影像的空間特徵進行影像分割。自影像分割可以更進一步被劃分為語意分割以及實例分割,語意分割是針對每個像素進行分類,實例分割進一步的將不同物件進行區分。對於正中神經而言,實例分割與語意分割將會得到相同的效果。
本實驗中與台大醫院合作蒐集共48位病患約30秒且每秒顯示畫格數約為30之手腕橫切面超音波影像,並由專業醫師進行標記正中神經的位置作為資料集。我們將資料進行灰階的預處理並將其中39位病患的資料作為訓練集,另外9位病人的資料作為測試集,來訓練以實例分割為目標的Mask R-CNN以及以語意分割為目標的DeepLab V3+。
我們成功的藉由深度學習架構Mask R-CNN以及DeepLab V3+利用Instance segmentation 與 semantic segmentation的方式將正中神經於超音波影像上進行影像分割,並分別於測試訓練集上得到平均IoU為0.8445與0.8375的成績,同時於預測正中神經質心上得到僅5.1831像素的平均誤差。我們確認了提高IoU能確實降低正中神經質心位置的平均誤差。藉由DeepLab V3+的實驗中得知提高training crop size 以及降低output stride在high level得到解析度較高的feature map能有較好的表現,也成功利用多尺度的影像輸入來解決Mask R-CNN中FPN面對物件大小分布不平均時不能充分被訓練而導致預測失準的問題。使用特徵提取能力較好的CNN結構以及隨機調整亮度和對比能確實提高平均IoU的數值。
zh_TW
dc.description.abstractAn increasing line of evidence shows that the cross-sectional area and motion pattern of the median nerve in symptomatic patients of carpal tunnel syndrome with normal or abnormal nerve conduction studies may be more correlated with their clinical symptoms. However, manual median nerve tracking in ultrasound imaging costs tons of human labor with expertise, and highly depends on the experience of the observer. To overcome these problems, the aim of this research is to apply automatic tracking systems of median nerve in dynamic sonography using deep learning.
There are two well-studied topics in computer vision fulfilling our purpose. One is tracking with time sequence data, and another is image segmentation. Consider the computational complexity and the difficulty of data recording, we constrain our problem into per-frame image segmentation with only spatial clues.
Image segmentation can be regarded as per-pixel classification and thus deep learning method has out-performed the traditional method in the recent years. Image segmentation can further split into two topics, semantic segmentation for per-pixel classification and instance segmentation, which is about classification of pixels in different objects.
We construct the state-of-the-art deep learning model Mask R-CNN and DeepLab V3+ of the instance and semantic segmentation, respectively, to execute image segmentation of the median nerve.
48 patients diagnosed as carpal tunnel syndrome were participated in the research, and a 30 seconds video of dynamic sonography with cross-section view of median nerve was recorded for each of the patient. We randomly chose 39 patients as training set, while the others as validation set.
Final evaluations of average IoU of 0.8445 and 0.8375 have been achieved by Mask R-CNN and DeepLab V3+, respectively. The Mask R-CNN approach yielded 5.1831 pixels as the mean error for the centroid of the median nerve through the validation dataset, and the reduction of the mean error was correlated with an increase of average IoU.
The results using DeepLab V3+ showed that higher performances were achieved by larger input crop size and smaller output stride during training, which improved the resolution of high level feature map. By applying multi-scale input size augmentation, we successfully solved the unbalanced object size problem that may cause failure of the FPN structure.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:18:37Z (GMT). No. of bitstreams: 1
ntu-108-R06945032-1.pdf: 6881077 bytes, checksum: d9f5e463adc4155945fa4d3b907eb11b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
圖目錄 X
表目錄 XII
第1章、 研究背景及目的 1
第2章、 文獻回顧與探討 7
2-1 深度學習於超音波影像 7
2-1-1 乳房 8
2-1-2 神經 10
2-1-3 關節滑液囊 11
2-1-4 脊椎 12
2-1-5 三維超音波 13
2-2 正中神經相關研究 14
2-3 CONVOLUTIONAL NEURAL NETWORK 架構 15
2-3-1 基本架構 15
2-3-1-1 Local Receptive Field 15
2-3-1-2 Convolutional Kernels 16
2-3-1-3 Pooling Layers 18
2-3-1-4 Atrous Convolutions (dilated convolutions) 19
2-3-2 進階架構 19
2-3-2-1 VGG 19
2-3-2-2 GoogLeNet 20
2-3-2-3 ResNet 22
2-3-2-4 ResNeXt 23
2-3-2-5 Xception 25
2-4 SEMANTIC SEGMENTATION 27
2-4-1 Fully Convolutional Networks (FCN) [25] 27
2-4-2 U-Net [26] 29
2-4-3 PSPNet [47] 30
第3章、 研究方法及步驟 31
3-1 正中神經自動標註 31
3-1-1 影像分割架構 31
3-1-1-1 語意分割 (Semantic segmentation) 31
3-1-1-2 實例分割 (Instance Segmentation) 33
3-1-2 影像分割架構於本實驗中的配置細節 40
3-1-2-1 DeepLab v3+ 40
3-1-2-2 Mask R-CNN 41
3-1-3 CNN架構 42
3-1-3-1 ResNet [23] 43
3-1-3-2 ResNeXt [44] 44
3-1-3-3 Modified Aligned Xception 45
3-1-4 架構組合 47
3-2 資料蒐集及處理 47
3-2-1 資料蒐集 47
3-2-2 資料分群 48
3-2-3 資料處理 49
3-2-4 資料擴增 50
3-3 分割結果的評估 50
3-3-1 影像分割資料集常用的評估方式 50
3-3-1-1 Intersection over Union 50
3-3-1-2 Average precision 51
3-3-1-3 Inference speed 52
3-3-2 醫學研究數據 53
3-3-2-1 質心 53
3-3-2-2 圓度 (circularity) 54
3-3-2-3 Mean Absolute Difference (MAD) 54
3-3-3 與文獻之比對 55
第4章、 結果與討論 56
4-1 實驗結果 56
4-1-1 影像分割資料集常用的評估 56
4-1-1-1 DeepLab V3+ 56
4-1-1-2 Mask R-CNN 57
4-1-2 醫學研究數據 58
4-1-2-1 Deeplab V3+ 58
4-1-2-2 Mask R-CNN 58
4-2 討論 59
4-2-1 DeepLab V3+ 59
4-2-1-1 output stride的影響 59
4-2-1-2 ASPP中調整atrous rate的影響 60
4-2-1-3 Crop size的影響 61
4-2-1-4 CNN結構的影響 61
4-2-2 Mask R-CNN 62
4-2-2-1 Multi-scale input的影響 62
4-2-2-2 以mAP作為評分討論 63
4-2-2-3 CNN結構的影響 64
4-2-3 綜合討論 65
4-2-3-1 Data augmentation的影響 65
4-2-3-2 個案討論 66
4-2-3-3 DeepLab V3+與Mask R-CNN的比較 75
第5章、 結論 78
第6章、 未來展望 79
6-1-1 Intra- and inter- observer variation 79
6-1-2 資料擴增(data augmentation) 79
6-1-2-1 Crowd labeling 79
6-1-2-2 超音波影像資料擴增 79
6-1-3 訓練細節 80
6-1-4 模型開發 80
第7章、 參考資料 81
dc.language.isozh-TW
dc.title利用深度學習於動態超音波影像進行正中神經的影像分割zh_TW
dc.titleImage segmentation of the median nerve in dynamic sonography using deep learningen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee傅楸善,吳爵宏
dc.subject.keyword影像分割,超音波影像,正中神經,深度學習,超音波掃描,zh_TW
dc.subject.keywordimage segmentation,median nerve,ultrasound,deep learning,sonography,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201903390
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
6.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved