請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74055完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳浩銘(Hao-Ming Chen) | |
| dc.contributor.author | Shih-Han Chen | en |
| dc.contributor.author | 陳詩涵 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:18:15Z | - |
| dc.date.available | 2021-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | (1) Onitsuka, K.; Ogawa, H.; Joh, T.; Takahashi, S.; Yamamoto, Y.; Yamazaki, H. J. Chem. Soc. 1991, 47 (6), 1531–1536.
(2) Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A. J. Phys. Chem. Lett. 2016, 7 (8), 1466–1470. (3) Zhang, S.; Kang, P.; Bakir, M.; Lapides, A. M.; Dares, C. J.; Meyer, T. J. PNAS. 2015, 112 (52), 15809–15814. (4) Zhang, L.; Zhao, Z.-J.; Gong, J. Angew. Chem. Int. Ed. 2017, 56 (38), 11326–11353. (5) Mobley, P. D.; Peters, J. E.; Akunuri, N.; Hlebak, J.; Gupta, V.; Zheng, Q.; Zhou, S. J.; Lail, M. Energy Procedia. 2017, 114, 7154–7161. (6) Karamian, E.; Sharifnia, S. Biochem. Pharmacol. 2016, 16, 194–203. (7) Ran, J.; Jaroniec, M.; Qiao, S.-Z. Adv. Mater. 2018, 30 (7), 1704649–31. (8) Tang, Q.; Lee, Y.; Li, D.-Y.; Choi, W.; Liu, C. W.; Lee, D.; Jiang, D.-E. J. Am. Chem. Soc. 2017, 139 (28), 9728–9736. (9) Min, X.; Kanan, M. W. J. Am. Chem. Soc. 2015, 137 (14), 4701–4708. (10) Jiang, B.; Zhang, X.-G.; Jiang, K.; Wu, D.-Y.; Cai, W.-B. J. Am. Chem. Soc. 2018, 140 (8), 2880–2889. (11) Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; Zou, C.; Quintero-Bermudez, R.; Pang, Y.; Sinton, D.; Sargent, E. H. Science. 2018, 360 (6390), 783–787. (12) Hori, Y. Chem. Lett. 1982, 55 (3), 660–665. (13) Weng, Z.; Zhang, X.; Wu, Y.; Huo, S.; Jiang, J.; Liu, W.; He, G.; Liang, Y.; Wang, H. Angew. Chem. Int. Ed. 2017, 56 (42), 13135–13139. (14) Liu, X.; Zhu, L.; Wang, H.; He, G.; Bian, Z. RSC Adv. 2016, 6, 38380–38387. (15) Hori, Y.; Kikuchi, K.; Letters, S. S. C. Chem. Lett. 1985, 14 (11), 1695–1698. (16) Vayenas C.G., White R.E., Gamboa-Aldeco M.E. Mod. Aspect. Electric. 2008, 42, 89 - 189. (17) Jitaru, M.; Lowy, D. A.; Toma, M.; Toma, B. C.; Oniciu, L. J. Appl. Electrochem. 1997, 27 (8), 875–889. (18) Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc. 1989, 85 (8), 2309–2318. (19) Lai, C.; Lee, S. J. Chin. Chem. Soc. 2003, 61 (4), 585 - 597. (20) Zhang, S.; Shao, Y.; Liao, H.-G.; Liu, J.; Aksay, I. A.; Yin, G.; Lin, Y. Chem. Mater. 2011, 23 (5), 1079–1081. (21) BAO, X. Acta. Phys. Chim. 2017, 33 (4), 651–652. (22) Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. J. Am. Chem. Soc. 2014, 136 (19), 6978–6986. (23) Mistry, H.; Reske, R.; Zeng, Z.; Zhao, Z.-J.; Greeley, J.; Strasser, P.; Cuenya, B. R. J. Am. Chem. Soc. 2014, 136 (47), 16473–16476. (24) Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2013, 135 (45), 16833–16836. (25) Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. J. Am. Chem. Soc. 2015, 137 (43), 13844–13850. (26) Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. J. Am. Chem. Soc. 2015, 137 (13), 4288–4291. (27) Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Nørskov, J. K.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2012, 14 (1), 76–81. (28) Durand, W. J.; Peterson, A. A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J. K. Surf. Sci. 2011, 605 (15-16), 1354–1359. (29) Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134 (17), 7231–7234. (30) Ma, M.; Djanashvili, K.; Smith, W. A. Phys. Chem. Chem. Phys. 2015, 17 (32), 20861–20867. (31) Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. L.; Kanan, M. W.; Chorkendorff, I. J. Am. Chem. Soc. 2015, 137 (31), 9808–9811. (32) Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y.-W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; Cuenya, B. R. Nat. Commun. 2016, 7, 1–8. (33) Watanabe, M.; Shibata, M.; of, A. K. J. Electrochem. SOC. 1991, 138 (11), 3382 - 3389. (34) Ishimaru, S. J. Electrochem. Soc. 2000, 147 (5), 1864–1867. (35) Christophe, J.; Doneux, T.; Buess-Herman, C. Electrocatalysis. 2012, 3 (2), 139–146. (36) Singh, S.; Gautam, R. K.; Malik, K.; Verma, A. Biochem. Pharmacol. 2017, 18, 139–146. (37) Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3 (2), 251–258. (38) Luc, W.; Collins, C.; Wang, S.; Xin, H.; He, K.; Kang, Y.; Jiao, F. J. Am. Chem. Soc. 2017, 139 (5), 1885–1893. (39) Kim, D.; Xie, C.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. J. Am. Chem. Soc. 2017, 139 (24), 8329–8336. (40) Boucher, M. B.; Zugic, B.; Cladaras, G.; Kammert, J.; Marcinkowski, M. D.; Lawton, T. J.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Phys. Chem. Chem. Phys. 2013, 15 (29), 12187–10. (41) Xu, Z.; Lai, E.; Shao-Horn, Y.; Hamad-Schifferli, K. Chem. Commun. 2012, 48 (45), 5626–3. (42) Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Nat. Commun. 2014, 5, 1–8. (43) Lysgaard, S.; Mýrdal, J. S. G.; Hansen, H. A.; Vegge, T. Phys. Chem. Chem. Phys. 2015, 17 (42), 28270–28276. (44) Kortlever, R.; Peters, I.; Balemans, C.; Kas, R.; Kwon, Y.; Mul, G.; Koper, M. T. M. Chem. Commun. 2016, 52 (67), 10229–10232. (45) Figueiredo, M. C.; Ledezma-Yanez, I.; Koper, M. T. M. ACS. Catal. 2016, 6 (4), 2382–2392. (46) Chauhan, A. Int. J. Fatigu. 2016, 93 (1), 1 -17. (47) Chang, Z.; Huo, S.; Zhang, W.; Fang, J.; Wang, H. J. Phys. Chem. C. 2017, 121 (21), 11368–11379. (48) Dillon, C. T. Aust. J. Chem. 2012, 65 (3), 204–214. (49) Larsson, M.; Linden, J. B.; Kaur, S.; Le Cerf, B.; Kempson, I. Powder. Diffr. 2017, 32 (S2), S28–S32. (50) Aceto, M. 8 - The Use of ICP-MS in Food Traceability; Elsevier. Ltd. 2016, 137–164. (51) Li, Q.; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Xi, Z.; Wang, T.; Lu, G.; Zhu, J.-J.; Sun, S. J. Am. Chem. Soc. 2017, 139 (12), 4290–4293. (52) Lee, H.; Kim, S.-K.; Ahn, S. H. J. Ind. Eng. Chem. 2017, 54, 218–225. (53) Shan, C.; Martin, E. T.; Peters, D. G.; Zaleski, J. M. Chem. Mater. 2017, 29 (14), 6030–6043. (54) Pal, A. K. J. Alloy. Comp. 2017, 698, 460 - 468. (55) Chen, S.; Liu, X.; Zhou, J.; Zha, L. J. Appl. Polym. Sci. 2017, 134 (41), 45375–10. (56) Li, M.; Wu, H.; Wu, Y.; Ying, Y.; Wen, Y.; Guo, X.; Yang, H. J. Raman. Spectrosc. 2016, 48 (4), 525–529. (57) Newton, M. A.; Knorpp, A. J.; Pinar, A. B.; Sushkevich, V. L.; Palagin, D.; van Bokhoven, J. A. J. Am. Chem. Soc. 2018, 140 (32), 10090–10093. (58) Arenas, J. F.; Soto, J.; Tocón, I. L.; Fernández, D. J.; Otero, J. C.; Marcos, J. I. J. Chem. Phys. 2002, 116 (16), 7207–7216. (59) Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. J. Phys. Chem. 2006, 110 (32), 15666–15675. (60) Wiley, B.; Sun, Y.; Chen, J.; Cang, H.; Li, Z.-Y.; Li, X.; Xia, Y. MRS. Bull. 2011, 30 (5), 356–361. (61) Xiong, Y.; Cai, H.; Yin, Y.; Xia, Y. Chem. Phys. Lett. 2007, 440 (4-6), 273–278. (62) Marks, L. D. Rep. Prog. Phys. 1999, 57 (6), 603–649. (63) Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.; Aloni, S.; Yin, Y. J. Am. Chem. Soc. 2005, 127 (20), 7332–7333. (64) Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. J. Am. Chem. Soc. 2007, 129 (12), 3665–3675. (65) Sun, Y.; Zhang, L.; Zhou, H.; Zhu, Y.; Sutter, E.; Ji, Y.; Rafailovich, M. H.; Sokolov, J. C. Chem. Mater. 2007, 19 (8), 2065–2070. (66) Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.Q. J. Am. Chem. Soc. 2008, 130 (22), 6949–6951. (67) Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Nat. Mater. 2007, 6 (9), 692–697. (68) Tsuji, M.; Miyamae, N.; Lim, S.; Kimura, K.; Zhang, X.; Hikino, S.; Nishio, M. Cryst. Growth. Des. 2006, 6 (8), 1801–1807. (69) Tsuji, M.; Yamaguchi, D.; Matsunaga, M.; Alam, M. J. Cryst. Growth. Des. 2010, 10 (12), 5129–5135. (70) Jin, M.; Zhang, H.; Wang, J.; Zhong, X.; Lu, N.; Li, Z.; Xie, Z.; Kim, M. J.; Xia, Y. ACS. Nano. 2012, 6 (3), 2566–2573. (71) Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.; Yin, Y.; Li, Z.-Y. Nano. Lett. 2005, 5 (7), 1237–1242. (72) Liu, L.; Corma, A. Chem. Rev. 2018, 118 (10), 4981–5079. (73) Sarkar, S.; Peter, S. C. Inorg. Chem. Front. 2018, 5 (9), 2060–2080. (74) Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A. Nat. Mater. 2014, 13 (12), 1143–1148. (75) Zheng, J.; Zhou, S.; Gu, S.; Xu, B.; Yan, Y. J. Electrochem. Soc. 2016, 163 (6), F499–F506. (76) Zalineeva, A.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G. Sci. Adv. 2017, 3 (2), e1600542. (77) Kibler, L. A. Electrochim. Acta. 2008, 53 (23), 6824–6828. (78) Quaino, P.; Santos, E. Langmuir. 2015, 31 (2), 858–867. (79) Pluntke, Y.; Kibler, L. A.; Kolb, D. M. Phys. Chem. Chem. Phys. 2008, 10 (25), 3684–3687. (80) Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochimi. Acta. 1994, 39 (11-12), 1833–1839. (81) Gao, D.; Zhou, H.; Cai, F.; Wang, D.; Hu, Y.; Jiang, B.; Cai, W.-B.; Chen, X.; Si, R.; Yang, F.; Miao, S.; Wang, J.; Wang, G.; Bao, X. Nano. Res. 2017, 10 (6), 2181–2191. (82) Guo, R.-H.; Liu, C.-F.; Wei, T.-C.; Hu, C.-C. Electrochem. Commun. 2017, 80, 24–28. (83) Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energ. Environ. SCI. 2012, 5 (5), 7050–10. (84) Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2013, 52 (28), 7282–7285. (85) Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. J. Phys. Chem. Lett. 2015, 6 (20), 4073–4082. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74055 | - |
| dc.description.abstract | 在全球暖化的議題延燒下,傳統以石油燃料為主要產能來源勢必需要減少用量,科學家們開始研究替代性能源,此外,也有研究是針對將二氧化碳轉成其他化合物,再繼續燃燒供能使用,形成一個環保的系統。
二氧化碳還原因此備受重視,而二氧化碳面臨的兩個大問題為:(1)產物選擇性低 (2)過電壓大,因此研究主要針對改善這兩個問題。 Hori教授大致上將用來電催化二氧化碳還原反應的金屬分成四類,其中,銅因為具有產碳氫化合物特性而開始被大量研究,不論是銅金屬、奈米銅,或是不同形貌、晶面、氧化價數的銅,發現銅在奈米粒子下形貌以及表面粗糙度對於還原產物具有一定的影響。又有研究發現不單是銅金屬,非銅金屬組合如鈀金合金可以產多碳產物,其藉由調控催化劑表面與一氧化碳的鍵結能力控制產物,結合與一氧化碳鍵結強的鈀與弱的金,造成此效果,由此可見,雙金屬具有協同效應,也因為兩金屬造成催化劑的特殊性質。 本研究結合鈀與銅作為雙金屬材料,藉由調控銅的濃度合成出不同形貌的鈀-銅雙金屬奈米材料,包含有單分子氧化銅分佈於鈀奈米立方、銅金屬簇於鈀奈米立方以及銅-鈀核殼結構,發現其中在低濃度銅的樣品具有對乙醇的高選擇性,在-0.7V(vs. RHE)達到48.86%的高產率。經由臨場x光吸收圖譜推測進行二氧化碳還原反應的活性位置應該位於單顆氧化銅上,且Pd89Cu11有最高乙醇產率的原因為其鈀表面上的單顆氧化銅的分佈最為適當,促成還原出乙醇的最佳條件。 | zh_TW |
| dc.description.abstract | As the issue of global warming is hot in the world, scientists are focused on the green energy and CO2 reduction reaction to cut down on the use of fossil fuel and turn CO2 into good use. The two main problems for CO2 reduction reaction are (1) low selectivity for products (2) high overpotential. As a result, many research discussed these problems and tried to dissolve the problems.
Professor Hori has classified metal that can catalyze CO2 reduction reaction into four groups. Among them, Cu is the only metal that can produce hydrocarbons, which is high energy products. However, in recent years, there's research about combining two different metal so that the catalyst display different reaction, which can even produce products that every single metal can’t produce. The classical case is bimetal of palladium and gold, both of which are not Cu. But with them combining, they produce multi hydrocarbon products. The reason is that they have different binding energy to CO. To have the same effect for that, we synthesize bimetal catalyst of Palladium and Copper. We found that in the low concentration of Cu, the catalyst has high ethanol faradic efficiency about 48.86%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:18:15Z (GMT). No. of bitstreams: 1 ntu-108-R06223126-1.pdf: 21801247 bytes, checksum: c6783d7b049aa220db13da82b0b41c77 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 第一章 緒論 1 1.1全球暖化 1 1.2二氧化碳還原反應 3 1.2.1有機法還原二氧化碳 3 1.2.2光催化二氧化碳還原反應 4 1.2.3電催化二氧化碳還原反應 5 1.3 銅材料電催化二氧化碳還原 9 1.3.1銅金屬做二氧化碳還原 9 1.3.2銅奈米材料做二氧化碳還原 11 1.3.3雙金屬催化二氧化碳還原反應 18 1.4研究動機 24 第二章 實驗步驟與儀器分析 25 2.1研究流程 25 2.2化學藥品 26 2.3實驗儀器 29 2.4催化材料製備 30 2.4.1奈米鈀立方 30 2.4.2鈀-銅核殼奈米材料 31 2.5樣品鑑定與分析 32 2.5.1電子顯微鏡 32 2.5.2能量散射X-射線光譜(Energy-disperse X-ray spectroscopy, EDS) 35 2.5.3 X光繞射分析(X-ray Diffraction, XRD) 37 2.5.4感應耦合電漿質譜儀(Inductive Coupling Plasma-Mass Spectrometer, ICP-MS) 38 2.6電化學分析 40 2.6.1線性掃描法(Linear Sweep Voltammetry, LSV) 41 2.6.2定電位量測法(Constant Potential Amperometry, CA) 41 2.7產物鑑定 42 2.7.1氣相層析質譜儀 (Gas Chromatography-Mass Spectrometry, GC-MS) 42 2.7.2核磁共振儀( Nuclear Magnetic Resonance, NMR) 44 2.8臨場吸收光譜量測電催化二氧化碳還原反應 45 2.8.1同步輻射光源 45 2.8.2 X光吸收光譜 (X-ray Absorption Spectrum, XAS) 48 第三章 結果與討論 51 3.1奈米鈀立方體製備 51 3.1.1合成機制 51 3.1.2十六烷基三甲基溴化銨的重要性 53 3.1.3溫度對於合成的影響 55 3.1.4電子顯微鏡分析 59 3.1.5 X光繞射分析 61 3.2鈀-銅雙金屬奈米材料製備 63 3.2.1合成機制 63 3.2.2鈀保護劑--聚乙烯吡咯烷酮 65 3.2.3銅保護劑--十六胺 66 3.2.4反應溶液--乙二醇 66 3.2.5電子顯微鏡分析 68 3.2.6感應耦合電漿質譜分析 79 3.2.7 X光繞射分析 80 3.2.8 X光吸收光譜分析 83 3.3電化學分析 85 3.3.1工作電極的製備 85 3.3.2線性掃描法 85 3.4 電催化二氧化碳還原反應 88 3.4.1電催化二氧化碳還原反應架設 88 3.4.2電催化二氧化碳還原反應產物分佈 89 3.5 臨場X光分析 96 3.5.1 Cu K edge 96 3.5.2 Cu R space 98 3.6二氧化碳還原反應機制 101 3.6.1鈀立方二氧化碳還原機制 101 3.6.2銅二氧化碳還原機制 104 3.6.3鈀銅二氧化碳還原機制 107 3.7應力影響(STRAIN EFFECT) 109 第四章 結論 110 參考文獻 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 全球暖化 | zh_TW |
| dc.subject | 二氧化碳還原反應 | zh_TW |
| dc.subject | 鈀 | zh_TW |
| dc.subject | 鈀銅雙金屬 | zh_TW |
| dc.subject | 乙醇 | zh_TW |
| dc.subject | ethanol | en |
| dc.subject | global warming | en |
| dc.subject | CO2 reduction reaction | en |
| dc.subject | palladium | en |
| dc.subject | bimetal catalyst of Palladium and Copper | en |
| dc.title | 鈀銅雙金屬奈米結構應用於電催化二氧化碳還原產物之研究 | zh_TW |
| dc.title | Product Distribution of CO2 Electroreduction on Palladium-Copper Bimetal Catalyst | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張慕傑(Mu-Chieh Chang),郭聰榮(Tsung-Rong Kuo),林律吟(Lu-yin Lin),蔡明剛(Ming-Kang Tsai) | |
| dc.subject.keyword | 全球暖化,二氧化碳還原反應,鈀,鈀銅雙金屬,乙醇, | zh_TW |
| dc.subject.keyword | global warming,CO2 reduction reaction,palladium,bimetal catalyst of Palladium and Copper,ethanol, | en |
| dc.relation.page | 120 | |
| dc.identifier.doi | 10.6342/NTU201902092 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 21.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
