請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74032| 標題: | 藉由視覺注意力來處理視頻摘要 Transforming Visual Attention into Video Summarization |
| 作者: | Yen-Ting Liu 劉彥廷 |
| 指導教授: | 王鈺強(Yu-Chiang Wang) |
| 關鍵字: | 視頻摘要,深度學習,電腦視覺, Computer Vision,Deep Learning,Video Summarization, |
| 出版年 : | 2019 |
| 學位: | 碩士 |
| 摘要: | 視頻摘要主要是從一部影片藉由挑選出真正重要的片段來縮短影片長度,到目前為止,視頻摘要仍然是一項在電腦視覺領域中值得研究的題目。在本篇論文中,我們提出了一個新的架構試圖去解決包含各式內容的影片。我們提出的多樣化專注層面的視頻摘要模型。 Video summarization is among challenging tasks in computer vision, which aims at identifying highlight frames or shots over lengthy video inputs. In this paper, we propose an attention-based model for video summarization and to handle complex video data. A novel deep learning the framework of multi-head multi-layer video self-attention (M2VSA) is presented to identify informative regions across spatial and temporal video features, which jointly exploit context diversity over space and time for summarization purposes. Together with visual concept consistency enforced in our framework, both video recovery and summarization can be preserved. More importantly, our developed model can be realized in both supervised/unsupervised settings. Finally, our experiments quantitative and qualitative results demonstrate the effectiveness of our model and our superiority over state-of-the-art approaches. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74032 |
| DOI: | 10.6342/NTU201901661 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 7.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
