請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74020完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳浩銘 | |
| dc.contributor.author | Bo-Cyuan Chen | en |
| dc.contributor.author | 陳柏銓 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:17:01Z | - |
| dc.date.available | 2024-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | (1) Broecker, W. S. Science 1975, 189 (4201), 460–463.
(2) Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M. Renewable Sustainable Energy Rev. 2014, 39 (C), 426–443. (3) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3 (1), 43–81. (4) Spinner, N. S.; Vega, J. A.; Mustain, W. E. Catal. Sci. Technol. 2012, 2 (1), 19–28. (5) Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508 (7497), 504–507. (6) Abas, N.; Kalair, A.; Khan, N. Futures 2015, 69, 31–49. (7) Gasser, T.; Guivarch, C.; Tachiiri, K.; Jones, C. D.; Ciais, P. Nat. Commun. 2015, 6 (1), 213. (8) D'Alessandro, D. M.; Smit, B.; Long, J. R. Angew. Chem. Int. Ed. 2010, 49 (35), 6058–6082. (9) Group, I. P. O. C. C. W., III. Carbon Dioxide Capture and Storage; Cambridge University Press, 2005. (10) Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 14 (11), 1695–1698. (11) Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc., Faraday Trans. 1 1989, 85 (8), 2309–2318. (12) Wang, Y.; Liu, J.; Wang, Y.; Al-Enizi, A. M.; Zheng, G. Small 2017, 13 (43), 1701809–1701815. (13) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev. 2009, 38 (1), 89–99. (14) Schwarz, H. A.; Dodson, R. W. J. Phys. Chem. 1989, 93 (1), 409–414. (15) Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. J. Am. Chem. Soc. 1987, 109 (16), 5022–5023. (16) Kim, J. J.; Summers, D. P.; Frese, K. W., Jr. J. Electroanal. Chem. Interfacial Electrochem. 1988, 245 (1-2), 223–244. (17) Cook, R. L.; MacDuff, R. C.; Sammells, A. F. J. Electrochem. Soc. 1989, 136 (7), 1982–1984. (18) Hori, Y.; Koga, O.; Yamazaki, H.; Matsuo, T. Electrochim. Acta 1995, 40 (16), 2617–2622. (19) Pritchard, J. Surf. Sci. 1979, 79 (1), 231–244. (20) Gattrell, M.; Gupta, N.; Co, A. J. Electroanal. Chem. 2006, 594 (1), 1–19. (21) Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. J. Am. Chem. Soc. 2014, 136 (40), 14107–14113. (22) Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3 (2), 251–258. (23) Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5 (5), 7050–10. (24) Hori, Y. In Modern Aspects of Electrochemistry; Modern Aspects of Electrochemistry; Springer New York: New York, NY, 2008; Vol. 42, pp 89–189. (25) Ahn, S. T.; Abu-Baker, I.; Palmore, G. T. R. Catal. Today 2017, 288, 24–29. (26) Lee, J.; Tak, Y. Electrochim. Acta 2001, 46 (19), 3015–3022. (27) Zhao, S.; Jin, R.; Jin, R. ACS Energy Lett. 2018, 3 (2), 452–462. (28) Miernicki, M.; Hofmann, T.; Eisenberger, I.; Kammer, von der, F.; Praetorius, A. Nat. Nanotechnol. 2019, 1–9. (29) Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nat. Rev. Mater. 2016, 1 (4), 9–14. (30) Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Nørskov, J. K.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2012, 14 (1), 76–81. (31) Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. J. Am. Chem. Soc. 2014, 136 (38), 13319–13325. (32) Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2013, 135 (45), 16833–16836. (33) Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134 (17), 7231–7234. (34) Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Phys. Chem. Chem. Phys. 2014, 16 (24), 12194–12201. (35) Kim, D.; Lee, S.; Ocon, J. D.; Jeong, B.; Lee, J. K.; Lee, J. Phys. Chem. Chem. Phys. 2015, 17 (2), 824–830. (36) Handoko, A. D.; Ong, C. W.; Huang, Y.; Lee, Z. G.; Lin, L.; Panetti, G. B.; Yeo, B. S. J. Phys. Chem. C 2016, 120 (36), 20058–20067. (37) Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. J. Am. Chem. Soc. 2014, 136 (19), 6978–6986. (38) Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; Jaramillo, T. F. ACS Catal. 2018, 8 (8), 7445–7454. (39) Murata, A.; Hori, Y. BCSJ 1991, 64 (1), 123–127. (40) Varela, A. S.; Ju, W.; Reier, T.; Strasser, P. ACS Catal. 2016, 6 (4), 2136–2144. (41) Ma, S.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. J. Am. Chem. Soc. 2016, 139 (1), 47–50. (42) Ren, D.; Ang, B. S.-H.; Yeo, B. S. ACS Catal. 2016, 6 (12), 8239–8247. (43) Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Nat. Commun. 2014, 5 (1), 332. (44) Kortlever, R.; Peters, I.; Balemans, C.; Kas, R.; Kwon, Y.; Mul, G.; Koper, M. T. M. Chem. Commun. 2016, 52 (67), 10229–10232. (45) Hahn, C.; Abram, D. N.; Hansen, H. A.; Hatsukade, T.; Jackson, A.; Johnson, N. C.; Hellstern, T. R.; Kuhl, K. P.; Cave, E. R.; Feaster, J. T.; Jaramillo, T. F. J. Mater. Chem. A 2015, 3 (40), 20185–20194. (46) Torelli, D. A.; Francis, S. A.; Crompton, J. C.; Javier, A.; Thompson, J. R.; Brunschwig, B. S.; Soriaga, M. P.; Lewis, N. S. ACS Catal. 2016, 6 (3), 2100–2104. (47) Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K. Angew. Chem. Int. Ed. 2014, 54 (7), 2146–2150. (48) Sarfraz, S.; Garcia-Esparza, A. T.; Jedidi, A.; Cavallo, L.; Takanabe, K. ACS Catal. 2016, 6 (5), 2842–2851. (49) Zhao, Y.; Wang, C.; Wallace, G. G. J. Mater. Chem. A 2016, 4 (27), 10710–10718. (50) Guo, X.; Zhang, Y.; Deng, C.; Li, X.; Xue, Y.; Yan, Y.-M.; Sun, K. Chem. Commun. 2015, 51 (7), 1345–1348. (51) Zhao, X.; Luo, B.; Long, R.; Wang, C.; Xiong, Y. J. Mater. Chem. A 2015, 3 (8), 4134–4138. (52) Luc, W.; Collins, C.; Wang, S.; Xin, H.; He, K.; Kang, Y.; Jiao, F. J. Am. Chem. Soc. 2017, 139 (5), 1885–1893. (53) Wu, H. L.; Sato, R.; Yamaguchi, A.; Kimura, M.; Haruta, M.; Kurata, H.; Teranishi, T. Science 2016, 351 (6279), 1306–1310. (54) Kuo, C. H.; Chen, C. H.; Huang, M. H. Adv. Funct. Mater. 2007, 17 (18), 3773–3780. (55) Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2011, 134 (2), 1261–1267. (56) Williams, D. B.; Carter, C. B. Transmission Electron Microscopy; Springer Science & Business Media, 2009. (57) Zhu, F.-Y.; Wang, Q.-Q.; Zhang, X.-S.; Hu, W.; Zhao, X.; Zhang, H.-X. Nanotechnology 2014, 25 (18), 185705–185711. (58) Bragg, W. H.; Bragg, W. L. Proc. R. Soc. Lond. A 1913, 88 (605), 428–438. (59) Rhodes, G. Collecting Diffraction Data, Third Edition. Elsevier Inc., 2006; pp 49–89. (60) Aceto, M. The Use of ICP-MS in Food Traceability; Elsevier Ltd, 2016; pp 137–164. (61) Vangari, M.; Pryor, T.; Jiang, L. J. Energy Eng. 2013, 139 (2), 72–79. (62) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd Edition; Wiley Global Education, 2000. (63) Stauffer, E.; Dolan, J. A.; Newman, R. Gas Chromatography and Gas Chromatography–Mass Spectrometry; Elsevier Inc. All rights reserved., 2008; pp 235–293. (64) Gross, J. H. Mass Spectrometry; Springer Science & Business Media, 2011. (65) Rankin, N. J.; Preiss, D.; Welsh, P.; Burgess, K. E. V.; Nelson, S. M.; Lawlor, D. A.; Sattar, N. Atherosclerosis 2014, 237 (1), 287–300. (66) Iwasawa, Y.; Asakura, K.; Tada, M. XAFS Techniques for Catalysts, Nanomaterials, and Surfaces; Springer, 2016. (67) Lin, F.; Liu, Y.; Yu, X.; Cheng, L.; Singer, A.; Shpyrko, O. G.; Xin, H. L.; Tamura, N.; Tian, C.; Weng, T.-C.; Yang, X.-Q.; Meng, Y. S.; Nordlund, D.; Yang, W.; Doeff, M. M. Chem. Rev. 2017, 117 (21), 13123–13186. (68) Zhang, L. In Metalloproteins; Hu, Y., Ed.; Methods and Protocols; Springer New York: New York, NY, 2018; Vol. 1876, pp 179–195. (69) van Bokhoven, J. A.; Lamberti, C. X-Ray Absorption and X-Ray Emission Spectroscopy; John Wiley & Sons, 2016. (70) Zhu, L.; Zhao, Y.; Zheng, W.; Ba, N.; Zhang, G.; Zhang, J.; Li, X.; Xie, H.; Bie, L. CrystEngComm 2016, 18 (27), 5202–5208. (71) Kumar, P.; Nagarajan, R.; Sarangi, R. J. Mater. Chem. C 2013, 1 (13), 2448–7. (72) Chen, C.; Zhang, B.; Zhong, J.; Cheng, Z. J. Mater. Chem. A 2017, 5 (41), 21955–21964. (73) Suen, N.-T.; Kong, Z.-R.; Hsu, C.-S.; Chen, H.-C.; Tung, C.-W.; Lu, Y.-R.; Dong, C.-L.; Shen, C.-C.; Chung, J.-C.; Chen, H. M. ACS Catal. 2019, 9 (6), 5217–5222. (74) Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. J. Phys. Chem. Lett. 2015, 6 (20), 4073–4082. (75) Khezri, B.; Fisher, A. C.; Pumera, M. J. Mater. Chem. A 2017, 5, 8230–8246. (76) Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5 (5), 2814–2821. (77) Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. ACS Catal. 2017, 7 (3), 1749–1756. (78) Huang, Y.; Deng, Y.; Handoko, A. D.; Goh, G. K. L.; Yeo, B. S. ChemSusChem 2017, 11 (1), 320–326. (79) Shinagawa, T.; Larrazábal, G. O.; Martín, A. J.; Krumeich, F.; Pérez-Ramírez, J. ACS Catal. 2018, 8 (2), 837–844. (80) Deng, Y.; Huang, Y.; Ren, D.; Handoko, A. D.; Seh, Z. W.; Hirunsit, P.; Yeo, B. S. ACS Appl. Mater. Interfaces 2018, 10 (34), 28572–28581. (81) García-Muelas, R.; Dattila, F.; Shinagawa, T.; Martín, A. J.; Pérez-Ramírez, J.; López, N. J. Phys. Chem. Lett. 2018, 9 (24), 7153–7159. (82) Haubold, H. G.; Vad, T.; Jungbluth, H.; Hiller, P. Electrochim. Acta 2001, 46 (10-11), 1559–1563. (83) De Luna, P.; Quintero-Bermudez, R.; Dinh, C.-T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P.; Sargent, E. H. Nature Catal. 2018, 1–8. (84) Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Angew. Chem. 2013, 125 (9), 2519–2522. (85) Garza, A. J.; Bell, A. T.; Head-Gordon, M. ACS Catal. 2018, 8 (2), 1490–1499. (86) Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. Chem. Sci. 2011, 2 (10), 1902–1908. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74020 | - |
| dc.description.abstract | 工業革命之後,對石化燃料的依賴使得大量二氧化碳被排放到大氣造成溫室效應和環境危害,同時也加速地球資源的枯竭。二氧化碳還原可將大氣中的二氧化碳轉化為高經濟價值的化合物,因此被視為是永續發展的關鍵技術。然而,此領域面臨產物選擇性太低的難題,在應用上還需要耗費額外的能源進行產物分離。因此,開發出具有高度選擇性的二氧化碳還原催化劑便十分重要。過往的文獻中,探討產物選擇性的因素有:電解液的種類、催化劑的晶面、尺寸和形貌、雙金屬催化劑等等,對於陰離子在催化劑中的研究著墨甚少。
本研究以陰離子交換法在室溫合成出銅之氧化物、硫化物和硒化物,並探討氧族元素陰離子對於銅產物選擇性之影響。依照產物的分佈,可將催化劑分成:銅金屬、氧化亞銅和硫化銅、硒化亞銅兩組。銅和氧化亞銅的主要產物是碳氫化合物和乙醇,硫化銅和硒化銅則幾乎都是甲酸。其中硫化銅在 -0.9 V (vs RHE) 的時候有最大的甲酸法拉第效率達58%,並且有 -7.1 mA/cm2的部分電流密度,具有最佳的催化能力。本研究更搭配臨場X光吸收和臨場X光繞射技術,發現硫化物與硒化物在高還原電位時並不會完全還原成銅金屬,仍有少數的陰離子殘留在材料中,也與能量色散X光光譜所得到的結果一致。配合反應機構的探討,本研究主張少數殘留的陰離子可以降低甲酸的中間產物 *OCOH在催化劑表面的吸附能,進而促進甲酸的生成,抑制一氧化碳路徑之產物。 | zh_TW |
| dc.description.abstract | Global warming and increasing demand of energy attract great attention in the past decade. Carbon dioxide electroreduction (eCO2RR) is one of the up-and-coming solution of this issue and offer a new route to synthesize fuels and chemicals. Plenty of transition materials were utilized in CO2RR, including Ag, Au, Zn, Sn, Pb, and their alloy. Cu is the most unique material which can convert CO2 into various products, such as CO, CH4, HCOO-, C2H4, and C2H5OH. Herein, we report a series of CO2 electroreduction catalysts via anion exchange reaction under ambient conditions. Cu and Cu2O produce manly hydrocarbons, while CuxS and Cu2Se produce mainly formate. CuS has the best CO2RR performance among all the catalysts. At -0.9 V vs RHE, CuxS can reach high formate faradic efficiency to ~58%, with partial current density jHCOO- = -7.1 mA/cm2 and largely suppress CO and hydrocarbon formation. We also briefly describe the CO2RR mechanism and explain the product selectivity between different samples. This work demonstrates that anion exchanging is an effective method and offers a new strategy for tuning CO2RR selectivity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:17:01Z (GMT). No. of bitstreams: 1 ntu-108-R06223124-1.pdf: 21621155 bytes, checksum: 4295d02402f88c4ab1db0e3f6ff61935 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 全球暖化與能源危機 1 1.2 二氧化碳的捕捉與封存 3 1.3 電催化二氧化碳還原 5 1.3.1 電催化二氧化碳還原催化劑 5 1.3.2二氧化碳還原之困境 8 1.3.3二氧化碳還原之中間產物 9 1.3.4 銅金屬催化劑 11 1.3.5 奈米催化劑 16 1.3.6產物選擇性之調控 22 1.4研究動機 27 第二章 實驗步驟與儀器分析原理 28 2.1 本研究實驗流程 28 2.2 本研究使用藥品 29 2.3 奈米銅催化劑之製備 31 2.3.1 氧化亞銅之製備 31 2.3.2 金屬銅之製備 32 2.3.3 硫化銅之製備 32 2.3.4 硒化亞銅之製備 33 2.4 工作電極之製備 33 2.5 樣品之鑑定與分析 34 2.5.1 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 35 2.5.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 37 2.5.3 能量色散X光光譜儀 (Energy Dispersive X-Ray Spectroscopy, EDS) 39 2.5.4 X光粉末繞射儀 (X-ray Diffraction, XRD) 40 2.5.5 感應耦合電漿質譜儀 (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 42 2.6 電催化二氧化碳還原反應之架設與分析 43 2.6.1實驗架設 43 2.6.2 線性掃描伏安法 (Linear Sweeping Voltammetry, LSV) 45 2.6.3 電化學阻抗譜 (Electrochemical Impedance Spectroscopy, EIS) 45 2.6.4 計時電流法(Chronoamperometry, CA) 47 2.7電催化二氧化碳還原產物之分析 48 2.7.1 氣相層析質譜儀 (Gas Chromatography-Mass Spectrometry, GC-MS) 48 2.7.2 核磁共振儀 (Nuclear Magnetic Resonance, NMR) 51 2.8 同步輻射之臨場實驗 53 2.8.1同步輻射光源 (Synchrotron radiation) 53 2.8.2臨場X光繞射分析 54 2.8.3 X光吸收光譜 (X-ray Absorption Spectroscopy, XAS) 55 2.8.3.1 X光吸收近邊緣結構光譜 (X-ray Absorption Near Edge Structure, XANES) 57 2.8.3.2 延伸X光吸收精細結構光譜光譜 (Extend X-ray Absorption Fine Structure, EXAFS) 59 2.8.4 X光吸收光譜之實驗架設 60 第三章 實驗結果與討論 63 3.1奈米銅催化劑之結構鑑定 63 3.1.1 X光繞射分析 63 3.1.2 穿透式電子顯微鏡分析 65 3.1.3掃描式電子顯微鏡分析 66 3.1.4 能量色散X光光譜儀分析 68 3.1.5 感應耦合電漿質譜分析 69 3.1.6 X光吸收光譜分析 70 3.1.6.1 L層X光吸收光譜分析 70 3.1.6.2 K層X光吸收光譜分析 71 3.2奈米銅催化劑之電化學鑑定 75 3.2.1 線性掃描伏安法分析 75 3.2.2 二氧化碳還原產物分析 78 3.2.2.1 法拉第效率分析 78 3.2.2.2 部分電流密度分析 83 3.2.2.3 含碳產物選擇性分析 87 3.3 奈米銅催化劑反應後之結構鑑定 89 3.3.1 穿透式電子顯微鏡分析 89 3.3.2 掃描式電子顯微鏡分析 90 3.3.3 能量色散X光光譜儀分析 92 3.3.4 L層X光吸收光譜分析 94 3.4 奈米銅催化劑之電化學臨場實驗分析 95 3.4.1 臨場X光繞射分析 95 3.4.2 臨場X光吸收光譜 103 3.4.2.1 臨場X光吸收近邊緣結構光譜分析 103 3.4.2.2 臨場延伸X光吸收精細結構光譜分析 108 3.5 二氧化碳還原之反應機構 112 第四章 結論 115 參考資料 116 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二氧化碳還原 | zh_TW |
| dc.subject | 臨場實驗 | zh_TW |
| dc.subject | 電催化還原 | zh_TW |
| dc.subject | in-situ experiment | en |
| dc.subject | CO2RR | en |
| dc.subject | electroreduction | en |
| dc.title | 以奈米銅硫屬化物調控二氧化碳還原產物選擇性 | zh_TW |
| dc.title | Tuning Carbon Dioxide Reduction Product Selectivity by Nano-Copper Chalcogenide Catalysts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林律吟,廖尉斯,郭聰榮,蔡明剛 | |
| dc.subject.keyword | 二氧化碳還原,電催化還原,臨場實驗, | zh_TW |
| dc.subject.keyword | CO2RR,electroreduction,in-situ experiment, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU201903436 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 21.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
