請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74017
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張培仁 | |
dc.contributor.author | Tzu-Sen Hung | en |
dc.contributor.author | 洪子森 | zh_TW |
dc.date.accessioned | 2021-06-17T08:16:55Z | - |
dc.date.available | 2024-08-16 | |
dc.date.copyright | 2019-08-16 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | [1] K. Panetta, “Widespread artificial intelligence, biohacking, new platforms and immersive experiences dominate this year’s Gartner Hype Cycle.,” 16 8 2018. [線上]. Available: https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/.
[2] Marposs, “切削設備的監控解決方案,” [線上]. Available: file:///C:/Users/USER/Downloads/D6C0920030.pdf. [3] W. Grzesik, “Advanced Machining Processes of Metallic Materials,” Advanced Machining Processes of Metallic Materials, p. 608, 11 2016. [4] K. Yu, “切削原理 CH0301 正交切削模型與切屑,” 7 1 2017. [線上]. Available: http://bloggerkevinyu.blogspot.com/2017/01/machining0301orthogoanlcuttingandchip.html. [5] V. P. Astakhov, Metal Cutting Mechanics, 1998. [6] Dimitri Germain, Guillaume Fromentin, Gérard Poulachon, Stéphanie Bissey-Breton, “From large-scale to micromachining: A review of force prediction models,” Journal of Manufacturing Processes, pp. 389-401, 8 2013. [7] Kejia Zhuang, Dahu Zhu, Han Ding, “An analytical cutting force model for plunge milling of Ti6Al4V considering cutter runout,” Cross Mark, pp. 3841-3852, 2018. [8] Yuki Yamada, Yasuhiro Kakinuma, “Sensorless cutting force estimation for full-closed controlled ball-screw-driven stage,” The International Journal of Advanced Manufacturing Technology, p. 3337–3348, 12 2016. [9] Sébastien Auchet, Pierre Chevrier, Michel Lacour, Paul Lipinski, “A new method of cutting force measurement based on command voltages of active electro-magnetic bearings,” International Journal of Machine Tools and Manufacture, pp. 1441-1449, 11 2004. [10] Gi D. Kim, Chong N. Chu, “Indirect Cutting Force Measurement Considering Frictional Behaviour in a Machining Centre Using Feed Motor Current,” International Journal of Advanced Manufacturing Technology, pp. 478-484, 7 1999. [11] Qiaokang Liang, Dan Zhang, Wanneng Wu, Kunlin Zou, “Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining,” Sensors (Basel), 16 11 2016. [12] Fan Chen, Guangya Liu, “Active damping of machine tool vibrations and cutting force measurement with a magnetic actuator,” The International Journal of Advanced Manufacturing Technology, pp. 691-700, 3 2017. [13] Yingxue Li, Yulong Zhao, Jiyou Fei, You Zhao, Xiuyuan Li, and Yunxiang Gao, “Development of a Tri-Axial Cutting Force Sensor for the Milling Process,” Sensors (Basel), 3 2016. [14] Yingxue Li, Yulong Zhao, Jiyou Fei, Yafei Qin, You Zhao, Anjiang Cai, Song Gao, “Design and Development of a Three-Component Force Sensor for Milling Process Monitoring,” Sensors (Basel), 5 2017. [15] X. Chen, “A multi-physics-based approach to design of the smart cutting tool and its implementation and application perspectives,” 2016. [16] Zhengyou Xie, Yong Lu, Jian-guang Li, “Development and testing of an integrated smart tool holder for four-component cutting force measurement,” Mechanical Systems and Signal Processing, pp. 225-240, 11 2017. [17] Muhammad Rizal, Jaharah A.Ghani, Mohd ZakiNuawi, Che HassanChe Haron, “Development and testing of an integrated rotating dynamometer on tool holder for milling process,” Mechanical Systems and Signal Processing, pp. 559-576, 2 2015. [18] Kistler. [線上]. Available: https://www.kistler.com/en/. [19] N.Constantinides, “An investigation of methods for the on-line estimation of tool wear,” International Journal of Machine Tools and Manufacture, pp. 225-237, 1987. [20] Jeong-Du Kim, Dong-Sik Kim, “Development of a combined-type tool dynamometer with a piezo-film accelerometer for an ultra-precision lathe,” Journal of Materials Processing Technology, pp. 360-366, 23 11 1997. [21] J.H.Kim, H.K.Chang, D.C.Han, D.Y.Jang, S.I.Oh, “Cutting Force Estimation by Measuring Spindle Displacement in Milling Process,” CIRP Annals, pp. 67-70, 2005. [22] W.L.Jin, P.K.Venuvinod, X.Wang, “An optical fibre sensor based cutting force measuring device,” International Journal of Machine Tools and Manufacture, pp. 877-883, 6 1995. [23] B.C. Rao, R.X. Gao, C.R. Friedrich, “Integrated force measurement for on-line cutting geometry inspection,” IEEE Transactions on Instrumentation and Measurement, 第 冊Volume 44, 編號 Issue 5, pp. 977-980, 1995. [24] Jun Huang, Chu Yan Wong, Duc Truong Pham, Yongjing Wang, Chunqian Ji, Shizhong Su, Wenjun Xu, Quan Liu, Zude Zhou, “Design of a Novel Six-Axis Force/Torque Sensor based on Optical,” Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, pp. 517-524, 2018. [25] Sheng A. Liu, Hung L. Tzo, “A novel six-component force sensor of good measurement isotropy and sensitivities,” Sensors and Actuators, pp. 223-230, 2002. [26] Qiaokang Liang, Dan Zhang, Yaonan Wang, Yunjian Ge, “Design and Analysis of a Novel Six-Componenet F/T Sensor based on CPM for Passive Compliant Assembly,” MEASUREMENT SCIENCE REVIEW, 2013. [27] G. Mastinu, M. Gobbi, G. Previati, “ A New Six-axis Load Cell.Part I: Design,” Experimental Mechanics, pp. 373-388, 2011. [28] 鼎朋企業股份有限公司, “BT刀桿與HSK刀桿的差異性,” [線上]. Available: http://prime91313.pixnet.net/blog/post/286325047. [29] 張家銘, “具力量感知能力的藍芽智慧刀桿,” 張家銘, 2018. [30] N. Instruments, NI, 19 3 2019. [線上]. Available: http://www.ni.com/zh-tw/innovations/white-papers/07/measuring-strain-with-strain-gages.html. [31] Nexperia, “74hc4067 datasheet,” 22 5 2015. [線上]. Available: https://assets.nexperia.com/documents/data-sheet/74HC_HCT4067.pdf. [32] T. Instruments, “ADS1286 datasheet,” [線上]. Available: https://www.ti.com/lit/ds/symlink/ads1286.pdf. [33] R. Wiki, “Bluno beetle datasheet,” 12 8 2015. [線上]. Available: https://www.robotshop.com/media/files/pdf/Bluno-Beetle-SKU_DFR0339.pdf. [34] sanlien, “應變規黏貼方式,” 12 4 2006. [線上]. Available: http://www.sanlien.com/web/homepage.nsf/foundationview/83A6B3F9B12227B24825714E0008BD5A. [35] 陸向陽, “認識UART、I2C、SPI三介面特性,” 12 7 2016. [線上]. Available: https://makerpro.cc/2016/07/learning-interfaces-about-uart-i2c-spi/. [36] “Material failure theory,” 29 6 2018. [線上]. Available: https://en.wikipedia.org/wiki/Material_failure_theory. [37] Kistler, “4-component Dynamometer (RCD),” [線上]. Available: https://www.kistler.com/?type=669&fid=88219&callee=frontend. [38] 衡碁科技, “動平衡等級,” [線上]. Available: http://www.baltech.com.tw/product.php?lang=en&tb=4&cid=483. [39] 續聯國際企業, “動平衡等級,” 14 12 2009. [線上]. Available: https://blog.xuite.net/lujim27992000/twblog/113398498-%E5%8B%95%E5%B9%B3%E8%A1%A1%E7%AD%89%E7%B4%9A%2C+ISO1940. [40] Daochun Xu, Pingfa Feng, Wenbin Li, Yuan Ma, Biao Liu, “Research on chip formation parameters of aluminum alloy 6061-T6 based on high-speed orthogonal cutting model,” The International Journal of Advanced Manufacturing Technology, pp. 955-962, 5 2014. [41] 碧威股份有限公司, 19 12 2011. [線上]. Available: http://tw.tool-tool.com/news/201112/milling-cutting-data/. [42] Kistler. [線上]. Available: https://www.kistler.com/?type=669&fid=75338&model=document&callee=frontend. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74017 | - |
dc.description.abstract | 因應工業4.0與智慧自動化的時代,在工具機加工廠中加裝適當的感測器來及時監測加工品質與效率使加工業能邁向精密化、高速化之目標。本論文旨在研發一款能直接量測到加工時產生的切削力訊號的無線傳輸切削力感測器,此款智慧刀把是將切削力感測結構以及藍芽感測模組內嵌於工具機之刀把之中,目標量測之訊號為Fr、Fz、Mz三組切削訊號。感測結構設計的部分藉由材料力學以及靜力學之原理來進行分析與模擬,設計出一款十字樑之感測結構,並利用有限元素法進行已知外力對此感測結構進行應變模擬分析,結合應變規為量測元件,選取能量到最大應變量之十字樑的位置。應變規之黏貼方式選用四線式量測,目的為將感測結構上之溫度耦合效應以及其他外在環境之耦合影響消除。再利用應變規之量測原理以及十字樑之感測結構建立一數值模型,能將應變規量測到之電壓變化量轉成切削力訊號。之後設計一款藍芽傳輸之無線感測模組,此款感測模組能將三組類比電壓訊號轉成數位訊號,並藉由MCU內部將電壓訊號轉為三組目標切削訊號,再藉由藍芽傳輸至終端,本研究有兩種終端接收方式,其一為電腦連結藍芽接收器接收藍芽訊號;其二為手機應用程式接收藍芽訊號。將前述之感測結構以及藍芽感測模組內嵌於BT40型號之刀把即為本論文所研發之智慧刀把 ( Smart Tool Holder )。智慧刀把製作完成後透過靜態校準來確定此感測器之功能運作是否正常,對智慧刀把分別施加已知的Fr、Fz、Mz外部負載,透過量測出來的負載訊號來進行智慧刀把之驗證以及解耦的步驟,而後將解耦合矩陣重新寫入感測模組中。在硬體方面,智慧刀把經過性能測試後之結果可達到精度Fr為 ±2.3 N,Fz為 ±1.9N,Mz為 ±0.16Nm;量測範圍Fr為 ±3467.5 N,Fz為 ±7192.3 N,Mz為 ±339.8 Nm;取樣頻率300 Hz;解析度12位元;模組功耗為198.6 mW。最後,將此智慧刀把進行實際的動態實驗,將智慧刀把加裝於CNC銑床工具機量測動態切削訊號,再透過現有之量測切削訊號之動力計之量測訊號進行驗證,以此實現智慧刀把之概念。 | zh_TW |
dc.description.abstract | In response to the era of Industry 4.0 and intelligent automation, appropriate sensors are installed in tool machine to monitor processing quality and efficiency in a timely manner, enabling the processing industry to achieve precise and high-speed targets. This paper aims to develop a wireless transmission cutting force sensor that directly measures the cutting force signal generated during machining. This smart tool holder handles the cutting force sensing structure and the Bluetooth sensing module embedded in the machine tool. In the machine tool, the target measurement signal is three sets of cutting signals: Fr, Fz and Mz. Part of the design of the sensing structure is analyzed and simulated by the principles of material mechanics and statics. The sensing structure of the cross beam is designed, and the finite element method is used to simulate the strain structure. Combine the strain gauge with the measuring component and select the position of the cross beam to the maximum strain. The strain gauge is selected by four-wire measurement to eliminate the coupling effect of the temperature coupling effect on the sensing structure and other external environments. Then, using the measurement principle of the strain gauge and the sensing structure of the cross beam, a numerical model is established to convert the voltage change measured by the strain gauge into a cutting force signal. Then design a wireless sensor module for Bluetooth transmission. The sensing module converts three sets of analog voltage signals into digital signals and converts the voltage signals into three sets of target cut signals through the MCU. From Bluetooth to the terminal, there are two types of terminal reception methods in this study. One is that the Bluetooth receiver connected to the computer receives the Bluetooth signal; the other is that the mobile app receives the Bluetooth signal. The tool holder embedded in the BT40 model has the above sensing structure and Bluetooth sensing module, and is a smart tool holder developed in this paper. After the production is completed, the smart tool holder determines whether the sensor function is normal through static calibration. The known external loads of Fr, Fz and Mz are applied to the smart tool holder and the smart tool holder is verified by the measured load signal. The decoupling step then rewrites the decoupling matrix to the sensing module. In terms of hardware, the performance test result of the smart tool holder reaching the precision Fr is ±2.3 N, Fz is ±1.9N, Mz is ±0.16Nm; the measurement range Fr is ±3467.5 N, Fz is ±7192.3 N, and Mz is ±339.8 Nm. The sampling frequency is 300 Hz; the resolution is 12 bits; the module power consumption is 198.6 mW. Finally, using this smart tool holder to carry out the actual dynamic experiment, the smart tool holder is added to the CNC milling machine to measure the dynamic cutting signal, and then the signal is verified by the existing cutting signal. Realize smart tool holder concept. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:16:55Z (GMT). No. of bitstreams: 1 ntu-108-R06543003-1.pdf: 5499765 bytes, checksum: 14f7af06ac90eac22504db184bce740e (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 iii
ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xiii 符號說明 xiv 下標符號 i 第一章 緒論 1 1.1 研究動機 1 1.2 切削力感測器 3 1.2.1 切削力模型 3 1.2.2 切削力量測系統 5 1.2.3 力感測器之設計方式 6 1.3 研究架構 8 1.4 實驗設置 8 1.4.1 實驗設備 8 1.4.2 定義切削力座標 9 1.4.3 切削力量測方式 10 第二章 智慧刀把之設計與運作原理 11 2.1 結構設計與模擬 11 2.1.1 力量感測結構設計 11 2.1.2 感測結構受力分析 12 2.2 力學模型 14 2.2.1 感測結構之受力分析 14 2.2.2 簡化力學模型 16 2.2.3 力學模型驗證 19 2.3 數值模型 21 2.3.1 應變規黏貼方式 21 2.3.2 力學模型結合感測器建模 23 第三章 藍芽切削力量測模組之研發與校準 25 3.1 模組設計及特性 25 3.1.1 訊號實現流程 25 3.1.2 硬體設計 26 3.1.3 軟體設計 31 3.1.4 使用者介面 32 3.2 力感測器之靜態測試 34 3.2.1 靜態校準 34 3.2.2 感測結構耦合效應與感測模組解耦 35 3.3 模組性能表現 37 3.3.1 模組之取樣頻率以及功耗 37 3.3.2 模組量測範圍分析 39 3.3.3 小結 40 第四章 實驗驗證 42 4.1 智慧刀把之動平衡校準 42 4.2 智慧刀把模態分析 43 4.3 切削力預測模型 44 4.3.1 切削力之預測模型 44 4.3.2 刀具之幾何分析 46 4.4 動態切削實驗 47 4.4.1 實驗架設 47 4.4.2 實驗結果 48 4.4.3 動力計驗證 54 4.5 小結 63 第五章 結論 64 5.1 結論 64 5.2 未來展望 65 參考文獻 69 | |
dc.language.iso | zh-TW | |
dc.title | 具力量感知功能的智慧刀把 | zh_TW |
dc.title | A Smart Tool Holder with Force Sensing Function | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 胡毓忠 | |
dc.contributor.oralexamcommittee | 李尉彰,黃榮堂 | |
dc.subject.keyword | 感測結構,應變規,全橋式電路,數值模型,切削力感測模組,藍芽傳輸,靜態校準,解耦合矩陣,動態切削,動力計,智慧刀把, | zh_TW |
dc.subject.keyword | Sensing structure,Strain gauge,Full bridge circuit,Numerical model,Cutting force sensing module,Bluetooth transmission,Static calibration,Decoupling matrix,Dynamic cutting,Dynamometer,Smart tool holder, | en |
dc.relation.page | 73 | |
dc.identifier.doi | 10.6342/NTU201903677 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。