請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73992完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀(Pen-Hsiu Grace Chao) | |
| dc.contributor.author | Chin-Hsun Huang | en |
| dc.contributor.author | 黃勁勛 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:16:03Z | - |
| dc.date.available | 2019-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | 1. DuFort, C.C., M.J. Paszek, and V.M. Weaver, Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol., 2011. 12(5): p. 308-19.
2. Yahia, L.H. and G. Drouin, Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture. J Orthop Res, 1989. 7(2): p. 243-51. 3. Lake, S.P., et al., Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J Orthop Res, 2009. 27(12): p. 1596-602. 4. Rigby, B.J., et al., The Mechanical Properties of Rat Tail Tendon. J Gen Physiol, 1959. 43(2): p. 265-83. 5. Freedman, B.R., et al., Tendon healing affects the multiscale mechanical, structural and compositional response of tendon to quasi-static tensile loading. J R Soc Interface, 2018. 15(139). 6. M, A., Mechanical behaviour of tendon in vitro. A preliminary report. Med Biol Eng, 1967. 5(5): p. 433-43. 7. Patterson-Kane, J.C., et al., Exercise-related alterations in crimp morphology in the central regions of superficial digital flexor tendons from young thoroughbreds: a controlled study. Equine Vet J, 1998. 30(1): p. 61-4. 8. Maeda, E., et al., Functional analysis of tenocytes gene expression in tendon fascicles subjected to cyclic tensile strain. Connect Tissue Res, 2010. 51(6): p. 434-44. 9. Kraus, A., et al., Spheroid formation and modulation of tenocyte-specific gene expression under simulated microgravity. Muscles Ligaments Tendons J, 2017. 7(3): p. 411-417. 10. Nichols, A.E.C., et al., Novel roles for scleraxis in regulating adult tenocyte function. BMC Cell Biol, 2018. 19(1): p. 14. 11. Giannopoulos, A., et al., Cellular homeostatic tension and force transmission measured in human engineered tendon. Journal of biomechanics, 2018. 78: p. 161-165. 12. Chao, P.G., H.Y. Hsu, and H.Y. Tseng, Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication, 2014. 6(3): p. 035008. 13. Chen, C.A. and P.G. Chao, Differential Mechanical Regulation of Nuclear Morphology in Wavy Structures, in Trans ORS 40. 2015: Las Vegas, NV. 14. Szczesny, S.E., et al., Crimped Nanofibrous Biomaterials Mimic Microstructure and Mechanics of Native Tissue and Alter Strain Transfer to Cells. ACS Biomater Sci Eng, 2017. 3(11): p. 2869-2876. 15. Fu, K.J. and P.G. Chao, Wavy Cells Control Nuclear Morphology through Actin Network, in ASCB. 2015: San Diego, CA. 16. Fu, K.J. and P.G. Chao, Wavy Structures Change Nuclear Shape and Mechanotransduction., in BMES-CMBE. 2017: Big Island, HI. 17. Szczesny SE, M.R., The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. J Biomech Eng., 2017. 139(2). 18. Versaevel M, G.T., Gabriele S, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun., 2012. 3: p. 671. 19. Rape, A.D., W.H. Guo, and Y.L. Wang, The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials, 2011. 32(8): p. 2043-51. 20. Brand, C.A., et al., Tension and Elasticity Contribute to Fibroblast Cell Shape in Three Dimensions. Biophysical Journal, 2017. 113(4): p. 770-774. 21. Long, R., et al., Effects of Gel Thickness on Microscopic Indentation Measurements of Gel Modulus. Biophysical Journal, 2011. 101(3): p. 643-650. 22. Engler, A., et al., Substrate compliance versus ligand density in cell on gel responses. Biophys J, 2004. 86(1 Pt 1): p. 617-28. 23. Denisin, A.K. and B.L. Pruitt, Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications. ACS Applied Materials & Interfaces, 2016. 8(34): p. 21893-21902. 24. Tseng, Q., et al., A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab on a Chip, 2011. 11(13): p. 2231-2240. 25. Butler, J.P., et al., Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol, 2002. 282(3): p. C595-605. 26. Tseng, Q., et al., Spatial organization of the extracellular matrix regulates cell-cell junction positioning. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1506-11. 27. Tabdanov, E.D., et al., Bimodal sensing of guidance cues in mechanically distinct microenvironments. Nature Communications, 2018. 9(1): p. 4891. 28. Oakes, P.W., et al., Geometry regulates traction stresses in adherent cells. Biophys J, 2014. 107(4): p. 825-33. 29. Califano, J.P. and C.A. Reinhart-King, Substrate Stiffness and Cell Area Predict Cellular Traction Stresses in Single Cells and Cells in Contact. Cell Mol Bioeng, 2010. 3(1): p. 68-75. 30. Senju, Y. and H. Miyata, The Role of Actomyosin Contractility in the Formation and Dynamics of Actin Bundles During Fibroblast Spreading. The Journal of Biochemistry, 2008. 145(2): p. 137-150. 31. Kovács, M., et al., Mechanism of Blebbistatin Inhibition of Myosin II. Journal of Biological Chemistry, 2004. 279(34): p. 35557-35563. 32. Zebda, N., O. Dubrovskyi, and K.G. Birukov, Focal Adhesion Kinase Regulation of Mechanotransduction and its Impact on Endothelial Cell Functions. Microvascular Research, 2012. 83(1): p. 71-81. 33. Spanjaard, E. and J. de Rooij, Mechanotransduction: Vinculin Provides Stability when Tension Rises. Current Biology, 2013. 23(4): p. R159-R161. 34. Chao, P.-h.G., Crimped Electrospun Fibers for Tissue Engineering, in Biomaterials for Tissue Engineering: Methods and Protocols, K. Chawla, Editor. 2018, Springer New York: New York, NY. p. 151-159. 35. Chang J, T.H., Chao PG, Ligament Tissue Engineering with Wavy Electrospun PLLA Fibers, in Trans ORS 39. 2014: New Orleans, LA. 36. Freedman BR, Z.A., Sarver JJ, Buckley MR, Soslowsky LJ, Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage. J Orthop Res., 2015. 33(6): p. 904-10. 37. Barfod, K., Achilles tendon rupture; Assessment of nonoperative treatment. Vol. 61. 2014. B4837. 38. Jiang, N., et al., Operative versus nonoperative treatment for acute Achilles tendon rupture: a meta-analysis based on current evidence. International orthopaedics, 2012. 36(4): p. 765-773. 39. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 2004. 6(4): p. 483-95. 40. Labouesse, C., et al., Cell Shape Dynamics Reveal Balance of Elasticity and Contractility in Peripheral Arcs. Biophysical Journal, 2015. 108(10): p. 2437-2447. 41. Gamboa, J.R., et al., Linear fibroblast alignment on sinusoidal wave micropatterns. Colloids and Surfaces B: Biointerfaces, 2013. 104: p. 318-325. 42. Chen, T., et al., Large-scale curvature sensing by directional actin flow drives cellular migration mode switching. Nature Physics, 2019. 15(4): p. 393-402. 43. Kassianidou, E., et al., Extracellular Matrix Geometry and Initial Adhesive Position Determine Stress Fiber Network Organization during Cell Spreading. Cell Reports, 2019. 27(6): p. 1897-1909.e4. 44. Yang, Q., et al., Arp2/3 complex–dependent actin networks constrain myosin II function in driving retrograde actin flow. The Journal of Cell Biology, 2012. 197(7): p. 939. 45. Buck, K.B., et al., Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation. Molecular biology of the cell, 2017. 28(1): p. 98-110. 46. Balaban, N.Q., et al., Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol, 2001. 3(5): p. 466-72. 47. Oakes, P.W. and M.L. Gardel, Stressing the limits of focal adhesion mechanosensitivity. Curr Opin Cell Biol, 2014. 30: p. 68-73. 48. Riveline, D., et al., Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. The Journal of cell biology, 2001. 153(6): p. 1175-1186. 49. Stricker, J., et al., Myosin II-Mediated Focal Adhesion Maturation Is Tension Insensitive. PLOS ONE, 2013. 8(7): p. e70652. 50. Vogel, V. and M. Sheetz, Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 2006. 7(4): p. 265-275. 51. Senger, F., et al., Spatial integration of mechanical forces by alpha-actinin establishes actin network symmetry. bioRxiv, 2019: p. 578799. 52. Thorpe, S.D. and D.A. Lee, Dynamic regulation of nuclear architecture and mechanics-a rheostatic role for the nucleus in tailoring cellular mechanosensitivity. Nucleus, 2017. 8(3): p. 287-300. 53. Lovett, D.B., et al., Modulation of Nuclear Shape by Substrate Rigidity. Cell Mol Bioeng, 2013. 6(2): p. 230-238. 54. Luke, Y., et al., Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J Cell Sci, 2008. 121(11): p. 1887-98. 55. Werner, M., et al., Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation. Adv Sci (Weinh), 2017. 4(2): p. 1600347. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73992 | - |
| dc.description.abstract | 在高度動態的組織,例如肌腱、韌帶和血管壁中,膠原蛋白束會形成稱為crimp的波紋狀結構。這些組織中的細胞也會有波紋狀型態。然而,目前波紋狀形態如何影響細胞張力並不清楚。在這項研究中,我們設計體外模型系統,使用在聚丙烯酰胺凝膠上之微壓印技術,來模擬可硬度控制的波紋狀微環境。細胞牽引力顯微術 (traction force microscopy, TFM) 顯示,於人類間葉幹細胞中,波紋狀比起直線的細胞,有更強的細胞牽引力。此外,軟性基材使得細胞對波紋與直線型態的效應變得敏感。我們的結果揭示了波紋狀形態對細胞張力具有單獨於肌凝蛋白-II收縮力以外的影響。 | zh_TW |
| dc.description.abstract | In highly dynamic tissues like tendons, ligaments and vascular walls, extracellular collagen bundles form wavy structures, known as crimp. Cells embedded in these tissues develop wavy morphology. However, how the wavy morphology influence cell behaviors, such as tension, is mostly unknown. In this study, we designed an in vitro model system using microcontact printing on polyacrylamide gel to mimic the wavy microenvironments with controllable substrate stiffness. Traction force microscopy (TFM) showed that crimp induced more cell traction forces in human mesenchymal stem cells (hMSCs) compared with straight cells. Interestingly, this increase is myosin-II-independent. Moreover, softer substrate sensitized the response to the wavy shape, such as cell spreading area and focal adhesions. Our results revealed myosin-II-contractility independent effects of wavy morphology on cell tension. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:16:03Z (GMT). No. of bitstreams: 1 ntu-108-R05548011-1.pdf: 2745675 bytes, checksum: 4c2c928b816e995ea36c32ec85834cd9 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 III
中文摘要 IV Abstract V Chapter 1 Introduction 1 Chapter 2 Material and Method 3 2.1 Microfabrication 3 2.2 Coverslip Silanization 4 2.3 Preparation of Polyacrylamide Hydrogel 4 2.4 Microcontact Printed Pattern Transfer 5 2.5 Cell Culture 9 2.6 Immunofluorescence and Fluorescent Probes in Microscopy 9 2.7 Microscopy and Analysis 10 2.8 Traction Force Microscopy 12 2.9 Inhibition Experiment 12 2.10 Statistical Analysis 13 Chapter 3 Results 14 3.1 hMSC conformed to wavy patterns 14 3.2 Wavy morphology increases cellular traction force. 16 3.3 Crimp induced myosin-II independent cell traction force. 21 3.4 Soft substrate stiffness and crimp increase hMSC spreading 23 3.5 Focal adhesion morphology is different when encountering crimp. 27 Chapter 4 Discussion 31 Reference 35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肌動蛋白 | zh_TW |
| dc.subject | 肌凝蛋白II | zh_TW |
| dc.subject | 曲率 | zh_TW |
| dc.subject | 細胞力學 | zh_TW |
| dc.subject | 細胞牽引力顯微術 | zh_TW |
| dc.subject | 細胞擴展 | zh_TW |
| dc.subject | 黏著斑 | zh_TW |
| dc.subject | curvature | en |
| dc.subject | myosin II | en |
| dc.subject | focal adhesion | en |
| dc.subject | cell spreading | en |
| dc.subject | cell mechanics | en |
| dc.subject | Cell traction force microscopy | en |
| dc.subject | actin | en |
| dc.title | 捲曲型態對細胞牽引力的效果 | zh_TW |
| dc.title | Effect of Crimp Morphology on Cell Traction Force | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許聿翔(Yu-Hsiang Hsu),朱業修(Yeh-Shiu Chu) | |
| dc.subject.keyword | 細胞牽引力顯微術,曲率,肌動蛋白,肌凝蛋白II,黏著斑,細胞擴展,細胞力學, | zh_TW |
| dc.subject.keyword | Cell traction force microscopy,curvature,actin,myosin II,focal adhesion,cell spreading,cell mechanics, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU201903303 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
