請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73977完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顧家綺 | |
| dc.contributor.author | Po-Ya Chien | en |
| dc.contributor.author | 簡柏雅 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:15:34Z | - |
| dc.date.available | 2022-08-27 | |
| dc.date.copyright | 2019-08-27 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | Allen, S. J., et al. (2011). 'The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1.' J Virol 85(9): 4184-4197.
Badoual, C., et al. (2008). 'The soluble alpha chain of interleukin-15 receptor: a proinflammatory molecule associated with tumor progression in head and neck cancer.' Cancer Res 68(10): 3907-3914. Bloom, D. C., et al. (2010). 'Epigenetic regulation of latent HSV-1 gene expression.' Biochim Biophys Acta 1799(3-4): 246-256. Chew, T., et al. (2009). 'Innate and adaptive immune responses to herpes simplex virus.' Viruses 1(3): 979-1002. Cunningham, A. L., et al. (2006). 'The cycle of human herpes simplex virus infection: virus transport and immune control.' J Infect Dis 194 Suppl 1: S11-18. Egan, K. P., et al. (2018). 'Modeling the pathology, immune responses, and kinetics of HSV-1 replication in the lip scarification model.' Virology 514: 124-133. Egan, K. P., et al. (2013). 'Immunological control of herpes simplex virus infections.' J Neurovirol 19(4): 328-345. Eidsmo, L., et al. (2009). 'Differential migration of epidermal and dermal dendritic cells during skin infection.' J Immunol 182(5): 3165-3172. Fehniger, T. A. and M. A. Caligiuri (2001). 'Interleukin 15: biology and relevance to human disease.' Blood 97(1): 14-32. Harris, K. M., et al. (2010). 'Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: implications for celiac disease.' Clin Immunol 135(3): 430-439. Jones, A. M., et al. (2016). 'The clinical significance and impact of interleukin 15 on keratinocyte cell growth and migration.' Int J Mol Med 38(3): 679-686. Kennedy, M. K., et al. (2000). 'Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice.' J Exp Med 191(5): 771-780. Kodukula, P., et al. (1999). 'Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system.' J Immunol 162(5): 2895-2905. Lee, T. L., et al. (2015). 'An alternatively spliced IL-15 isoform modulates abrasion-induced keratinocyte activation.' J Invest Dermatol 135(5): 1329-1337. Lin, Y. J., et al. (2017). 'Development of an Economical DNA Delivery System by 'Acufection' and its Application to Skin Research.' J Vis Exp(122). Machado Diaz, A. C., et al. (2012). 'Proinflammatory soluble interleukin-15 receptor alpha is increased in rheumatoid arthritis.' Arthritis 2012: 943156. Masuda, A., et al. (2001). 'Interleukin-15 prevents mouse mast cell apoptosis through STAT6-mediated Bcl-xL expression.' J Biol Chem 276(28): 26107-26113. Matundan, H. H., et al. (2016). 'Interrelationship of Primary Virus Replication, Level of Latency, and Time to Reactivation in the Trigeminal Ganglia of Latently Infected Mice.' J Virol 90(20): 9533-9542. McDonald, P. P., et al. (1998). 'Interleukin-15 (IL-15) induces NF-kappaB activation and IL-8 production in human neutrophils.' Blood 92(12): 4828-4835. McInnes, I. B., et al. (1997). 'Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis.' Nat Med 3(2): 189-195. Patel, A. R., et al. (2009). 'Herpes simplex virus: a histopathologic study of the depth of herpetic wounds.' Int J Dermatol 48(1): 36-40. Perera, P. Y., et al. (2012). 'The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use.' Microbes Infect 14(3): 247-261. Shinozaki, M., et al. (2002). 'IL-15, a survival factor for kidney epithelial cells, counteracts apoptosis and inflammation during nephritis.' J Clin Invest 109(7): 951-960. Simmons, A. and A. A. Nash (1984). 'Zosteriform spread of herpes simplex virus as a model of recrudescence and its use to investigate the role of immune cells in prevention of recurrent disease.' J Virol 52(3): 816-821. Stonier, S. W. and K. S. Schluns (2010). 'Trans-presentation: a novel mechanism regulating IL-15 delivery and responses.' Immunol Lett 127(2): 85-92. Suazo, P. A., et al. (2015). 'Evasion of early antiviral responses by herpes simplex viruses.' Mediators Inflamm 2015: 593757. Tagaya, Y., et al. (1997). 'Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides.' Proc Natl Acad Sci U S A 94(26): 14444-14449. Tan, X. and L. Lefrancois (2006). 'Novel IL-15 isoforms generated by alternative splicing are expressed in the intestinal epithelium.' Genes Immun 7(5): 407-416. Teague, O. and E. W. Goodpasture (1923). 'Experimental Herpes Zoster.' J Med Res 44(2): 185-200 187. Thellman, N. M. and S. J. Triezenberg (2017). 'Herpes Simplex Virus Establishment, Maintenance, and Reactivation: In Vitro Modeling of Latency.' Pathogens 6(3). van Lint, A., et al. (2004). 'Herpes simplex virus-specific CD8+ T cells can clear established lytic infections from skin and nerves and can partially limit the early spread of virus after cutaneous inoculation.' J Immunol 172(1): 392-397. Wahl, M. C., et al. (2009). 'The spliceosome: design principles of a dynamic RNP machine.' Cell 136(4): 701-718. Wakim, L. M., et al. (2008). 'CD8(+) T-cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection.' Immunol Cell Biol 86(8): 666-675. Waldmann, T. A. (2004). 'Targeting the interleukin-15/interleukin-15 receptor system in inflammatory autoimmune diseases.' Arthritis Res Ther 6(4): 174-177. Weidmann, M., et al. (2003). 'Rapid detection of herpes simplex virus and varicella-zoster virus infections by real-time PCR.' J Clin Microbiol 41(4): 1565-1568. Whitley, R., et al. (2007). Pathogenesis and disease. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. A. Arvin, G. Campadelli-Fiume, E. Mocarski et al. Cambridge. Whitley, R. J. (2015). 'Herpes Simplex Virus Infections of the Central Nervous System.' Continuum (Minneap Minn) 21(6 Neuroinfectious Disease): 1704-1713. Whitley, R. J. and B. Roizman (2001). 'Herpes simplex virus infections.' Lancet 357(9267): 1513-1518. Wu, T. S., et al. (2002). 'Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15 receptor alpha-chain.' J Immunol 168(2): 705-712. Yano, S., et al. (2003). 'Interleukin 15 induces the signals of epidermal proliferation through ERK and PI 3-kinase in a human epidermal keratinocyte cell line, HaCaT.' Biochem Biophys Res Commun 301(4): 841-847. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73977 | - |
| dc.description.abstract | 單純疱疹第一型病毒 (HSV-1)是一種雙股DNA病毒。其可以感染黏膜表皮細胞,並在中樞神經中建立潛伏性感染,再次活化的病毒可以造成免疫力下降的宿主新的病徵。
HSV-1從皮膚感染小鼠之後,會在感染的局部 (初級感染區)先進行複製,之後以反向軸突運輸的方式進入背根神經節。當病毒再次從神經細胞以順向軸突運輸的方式突現時,會在該神經分布的皮膚上觀察到新的病毒傷痂 (稱為次級感染)。 IL-15ΔE7是IL-15 pre-mRNA通過選擇性剪接機制產生的異構體。我的論文研究和先前的實驗結果均發現, ENU突變P191品系小鼠(P191)皮膚會表現相當數量的IL-15ΔE7及IL-15 mRNA。感染HSV-1後,可以觀察到P191小鼠比野生型B6小鼠形成較嚴重而且持續較長時間的病毒傷痂。因此本論文的主要目標是希望進一步探討,皮膚在IL-15ΔE7調節的免疫反應情況下對於HSV-1在皮膚以及背根神經節的感染力的影響。 實驗結果顯示,雖然HSV-1感染野生型小鼠皮膚48小時後可以誘導IL-15 mRNA 的表現, P191小鼠皮膚感染HSV-1後,反而容易誘導IL-15ΔE7的表現量,增加的情形比IL-15 mRNA 提高5倍。對病毒傷痂皮膚進行病理分析的結果發現,HSV-1感染野生型小鼠皮膚48小時後會在表皮觀察到合胞體細胞、染色質邊緣化等細胞病變,可以觀察到免疫細胞浸潤現象;感染後的表皮細胞在第五到七天時大量死亡同時伴隨新的角質細胞增生,免疫細胞浸潤程度更為顯著;第十天時原來的傷痂已經癒合。反觀P191小鼠,感染後的表皮細胞在48小時內即出現顯著的細胞死亡及大範圍的組織破壞,但是不若野生型小鼠皮膚有免疫細胞浸潤的現象。因HSV-1感染導致細胞死亡及組織破壞可以延伸至真皮層,感染後第十天雖然在病毒傷痂處的表皮有新增生的角質細胞,表皮卻未癒合修復。從病毒溶斑分析的結果發現,野生型小鼠皮膚在感染後48小時病毒量達到最高,在感染後第四天病毒量開始減少。相較之下,P191小鼠皮膚受HSV-1感染後,病毒量同樣在48小時達到最多,在感染第四天些微減少後卻在皮膚維持一定的病毒量。這些實驗結果說明P191小鼠皮膚感染HSV-1後容易發生細胞死亡、免疫細胞浸潤減少、表皮細胞修復慢等因素,可能是造成P191小鼠HSV-1傷痂在外觀上比野生型小鼠更加嚴重的原因。以即時定量PCR檢測小鼠背根神經節中的病毒量的實驗結果發現,與野生型小鼠相較下,HSV-1可以更早在P191小鼠的背根神經節增殖而且延長在該組織中擴增的結果,這極有可能是造成P191小鼠的腹側出現病毒傷痂持續時間較長的因素。 總體來說,我的論文研究發現IL-15 的表現對於提高皮膚對HSV-1感染的抵禦能力相當重要。表皮角質細胞對HSV-1感染的抗性增加不僅維持皮膚的完整性,而且還引發對HSV-1的適當免疫反應以達到更好和更早的表皮恢復。而當HSV-1感染P191小鼠皮膚主要是誘發IL-15ΔE7的表現時,感染的表皮細胞的大量且快速死亡除了阻礙免疫細胞浸潤到皮膚的路徑與作用,角質細胞增生慢、延遲皮膚傷痂修復時間,除了提高HSV-1進入背根神經節,周邊皮膚免疫功能下降也可能促使病毒在神經細胞複製和擴增。IL-15ΔE7容易促使角質細胞感染HSV-1後死亡的分子機制將值得作進一步的探討。 | zh_TW |
| dc.description.abstract | Herpes simplex virus-1 (HSV-1) is a double-stranded DNA virus. It can infect mucoepithelial cells and establish latent infection in the central neuron system. Reactivation of HSV-1 from latently infected ganglia of immune-reduced host may cause new disease.
After infection via flank skin, HSV-1 first replicates locally (primary infection site), and then conveys to the dorsal root ganglia (DRG) by retrograde axonal transport pathway. When HSV-1 re-emerges from infected neurons by anterograde axonal transport, new viral lesion can be observed along the innervating dermatome (secondary infection site). IL-15ΔE7 isoform is produced by an alternatively splicing mechanism from IL-15 pre-mRNA. Our previous studies have found that the skin of an ENU-mutagenized pedigree 191 (P191) mice expressed comparable levels of IL-15ΔE7 and IL-15 mRNAs. Infection of P191 flank skin with HSV-1 caused a more severe and prolonged HSV-1 lesion compared to wild type C57BL/6 mice (WT). The overall goal of my thesis is to further investigate the effect of IL-15ΔE7 modulated-skin immune response on the infectivity of HSV-1 in skin and dorsal root ganglia in P191 mice. Results from these experiments showed that HSV-1 infection upregulated transcription of IL-15 mRNA in WT skin at 48 hours post infection. In contrast, a greater transcriptional level of IL-15ΔE7 than IL-15 mRNA was induced by HSV-1 in P191 skin. While cytopathology such as syncytia and chromatin marginalization were observed in HSV-1 infected epidermal keratinocytes within 48 hours following by evident cell death between 5-7 days post infection in WT mice, prominent cell death was found in the epidermis of P191 mice as early as 24 hours post infection. Less immune cell infiltration to leasional skin was found in P191 compared to WT mice during primary HSV-1 infection. Viral lesion was healed by newly proliferated keratinocytes by day 10 post infection in WT mice. However, the epidermis was not completely healed at day 10 in P191 mice. HSV-1 replication was evaluated by measuring viral yields from lesioanl skin by plaque forming assays. Virus titers were peaked at 48 hours, starting to decline at day 5 and continued to decrease at day 7 post infection in WT mice. While HSV-1 replication was comparable between WT and P191 at day 2, virus titers remained at a stable level until day 7 in P191 skin. Accumulated HSV-1genomes in the innervating DRG of P191 were higher in the quantity as well as in the duration compared to those of WT mice after HSV-1 primary infection. Results from my thesis research found that induced expression of IL-15ΔE7 expression by HSV-1 enhances cytopathology in both epidermis and the dermis, decreasing anti-viral immune responses and prolongs viral replication in the skin after primary HSV-1 infection. Enhancement of viral replication in the skin may facilitate HSV-1 to replicate in the innervating DRGs for a longer period and therefore increase HSV-1 reactivation from the infected neurons. Altogether, this research has emphasized an important role for IL-15 in mediating HSV-1 pathogenesis in the skin and the DRGs. The increased resistance of epidermal keratinocytes in response to HSV-1 infection not only maintains the integrity of the skin which initiates appropriate immune responses to HSV-1 but also attenuates HSV-1 replicative capability in the DRGs. The molecular mechanism by which IL-15ΔE7 promotes the death of keratinocytes after HSV-1 infection is worth to further investigate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:15:34Z (GMT). No. of bitstreams: 1 ntu-108-R06449001-1.pdf: 2605190 bytes, checksum: c1d34a2a66decd9a2097652c7026c642 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT v Content vii Figure Content xi Chapter 1. Introduction 1 1.1 Herpes simplex virus – 1 (HSV-1) 1 1.1.1 HSV-1 infection in human 1 1.1.2 Clinical symptoms 1 1.2 HSV-1 zosteriform mouse model 1 1.3 HSV-1 pathogenesis 2 1.3.1 Replication of HSV-1 at primary infection site 2 1.3.2 Entry of HSV-1 to dorsal root ganglia 3 1.3.3 Re-emerge of HSV-1 in secondary infection site 4 1.4 Immune response to HSV-1 infection 5 1.4.1 Immune response in skin 5 1.4.2 Immune response in dorsal root ganglia 6 1.5 The role of IL-15 6 1.5.1 IL-15 and innate immune cells 7 1.5.2 IL-15 and adaptive immune cells 7 1.6 The role of IL-15ΔE7 7 1.6.1 ENU mutagenized P191 mice that express alternatively spliced IL-15 isoform 8 1.6.2 Ectopic expression of IL-15ΔE7 8 Chapter 2. Specific Aim 10 Chapter 3. Material and Methods 12 3.1 Methods 12 3.1.1 Mice and Viruses 12 3.1.2 HSV-1 Infection 12 3.1.3 Evaluation of the severity of HSV-1 lesion 13 3.1.4 Collection of lesional skin and isolation of innervating dorsal root ganglia (DRG) 14 3.1.5 DNA and RNA extraction 14 3.1.6 Preparation of HSV-1 gB and TK amplicon 15 3.1.7 Quantitative real-time PCR (q-PCR) analysis by SYBR green 15 3.1.8 Quantitative real-time PCR (q-PCR) analysis by TaqMan 16 3.1.9 Plaque forming assay 17 3.1.10 Immunohistochemical staining (IHC) 18 3.2 Materials 19 3.2.1 List of primers 19 3.2.2 List of Taqman probe and primer set 20 3.2.3 List of antibodies 21 3.2.4 Buffers and solutions 21 Chapter 4. Results 24 4.1 The severe lesion developed earlier in primary infection site of P191 mice compared to WT mice. 24 4.1.1 Comparison of the presentation of skin lesion in primary infection site from HSV-1 infected WT and P191 mice 24 4.1.2 Evaluation of the pathology score of skin lesion in primary infection site from HSV-1 infected WT and P191 mice 24 4.2 The severe lesion last longer in primary infection site of P191 mice compared to WT mice. 25 4.2.1 Comparison of the presentation of skin lesion in primary infection site from HSV-1 infected WT and P191 mice 25 4.3 The significant epidermal cell death could be observed in P191 skin after HSV-1 infection as soon as day 1 post infection. 26 4.4 HSV-1 induced significant cell death in WT skin could be observed until 5 days pos infection. 27 4.5 The delayed-healing lesion was observed in P191 mice compared to WT mice. 28 4.6 HSV-1 induced high expression of IL-15 and IL-15ΔE7 in WT and P191 skin respectively at 48 hour post infection. 29 4.7 The transcriptional expression of IL-1β and IL-6 gene were attenuated in P191 skin after HSV-1 infection compared to WT skin. 30 4.8 The immune infiltrating cells were reduced in P191 skin after HSV-1 infection. 31 4.9 The remaining of high viral yield was detected at 7 days post infection in primary infection site of P191 skin compared to WT skin. 32 4.10 The lesion of secondary site still developed at 10 days post infection in P191 mice but not in WT mice 33 4.10.1 Comparison of the presentation of skin lesion in secondary infection site from HSV-1 infected WT and P191 mice 33 4.11 The correlation between HSV-1 viral yield and genome copy number. 34 4.12 The viral genome increased earlier and remained for a longer period in DRG of P191 mice. 35 Chapter 5. Discussion 37 5.1 Transcriptional expressions of IL-15 and IL-15ΔE7 genes after HSV-1 infection 37 5.2 The correlation between transcriptional expression of IL-15/IL-15ΔE7 gene and inflammatory response in skin after HSV-1 infection 38 5.3 The effect of IL-15 and IL-15ΔE7 on keratinocyte survival after HSV-1 infection 39 5.4 The effect of IL-15 and IL-15ΔE7 on HSV-1 infectivity in skin and dorsal root ganglia 41 REFERENCE 43 FIGURE 49 | |
| dc.language.iso | en | |
| dc.subject | IL-15異構物 | zh_TW |
| dc.subject | 第一型單純?疹病毒 | zh_TW |
| dc.subject | Herpes Simplex Virus-1 | en |
| dc.subject | IL-15 | en |
| dc.title | 探討第一型單純疱疹病毒在表現IL-15選擇性剪接異構體ENU 突變鼠的皮膚與背根神經節的感染力 | zh_TW |
| dc.title | To investigate the infectivity of Herpes Simplex Virus-1 in the skin and in the dorsal root ganglia of ENU mutagenized mice that express alternatively spliced IL-15 isoform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李建國,黃佩欣 | |
| dc.subject.keyword | IL-15異構物,第一型單純?疹病毒, | zh_TW |
| dc.subject.keyword | IL-15,Herpes Simplex Virus-1, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201903637 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
