請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73971完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡協澄(Hsieh-Chen Tsai) | |
| dc.contributor.author | Hsin-Yu Hsieh | en |
| dc.contributor.author | 謝新雨 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:15:22Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-01 | |
| dc.identifier.citation | C. S. Peskin, “Flow patterns around heart valves: A numerical method,” J. Comput. Phys., vol. 10, pp. 252–271, 1972. M. Lai and C. Peskin, “An immersed boundary method with formal second-order accuracy and reduced numerical viscosity,” J. Comput. Phys., vol. 160, pp. 705–719, 2000. D. Goldstein, R. Handler, and L. Sirovich, “Modeling a no-slip ow boundary with an external force eld,” J. Comput. Phys., vol. 59, pp. 354–366, 1993. E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, “Combined immersed- boundary nite-di erence methods for three-dimensional complex ow simulations,” J. Comput. Phys., vol. 161, pp. 35–60, 2000. J. Mohd-Yusof, “Combined immersed-boundary/b-spline methods for simulations of ow in complex geometries, center for turbulence research,” Annual Research Briefs, pp. 317–327, 1997. L. Lee and R. LeVeque, “An immersed interface method for incompressible navier– stokes equations,” SIAM J. Sci. Comput., vol. 25, pp. 832–856, 2003. K. Taira and T. Colonius, “The immersed boundary method: A projection ap- proach,” J. Comput. Phys., vol. 225, pp. 2118–2137, 2007. X. Yang, X. Zhang, Z. Li, and G.-W. He, “A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations,” J. Comput. Phys., vol. 228, pp. 7821–7836, 2009. J. H. Seo and R. Mittal, “A sharp-interface immersed boundary method with im- proved mass conservation and reduced spurious pressure oscillations,” J. Comput. Phys., vol. 230, pp. 7347–7363, 2011. A. Goza, S. Liska, B. Morley, and T. Colonius, “Accurate computation of surface stresses and forces with immersed boundary methods,” J. Comput. Phys., vol. 321, pp. 860–873, 2016. B. Kallemov, A. Bhalla, B. Gri th, and A. Donev, “An immersed interface method for incompressible navier–stokes equations,” Appl. Math. Comput. Sci., vol. 11, pp. 79–141, 2016. M. Uhlmann, “An immersed boundary method with direct forcing for the simulation of particulate ows,” J. Comput. Phys., vol. 209, pp. 448–476, 2005. I. Borazjani, L. Ge, and F. Sotiropoulos, “Curvilinear immersed boundary method for simulating uid structure interaction with complex 3d rigid bodies,” J. Comput. Phys., vol. 227, 2008. J. D. Eldredge, “Dynamically coupled fluid-body interactions in vorticity-based nu- merical simulations,” J. Comput. Phys., vol. 227, pp. 9170–9194, 2008. T. Kempe and J. Fröhlich, “An improved immersed boundary method with direct forcing for the simulation of particle laden flows,” J. Comput. Phys., vol. 231, pp. 3663–4498, 2012. W.-P. Breugem, “A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows,” J. Comput. Phys., vol. 231, pp. 4469– 4498, 2012. J. Yang and F. Stern, “A non-iterative direct forcing immersed boundary method for strongly-coupled uid-solid interactions,” J. Comput. Phys., vol. 295, pp. 779–804, 2015. C. Wang and J. D. Eldredge, “Strongly coupled dynamics of uids and rigid-body systems with the immersed boundary projection method,” J. Comput. Phys., vol. 295, pp. 87–113, 2015. U. Lācis, K. Taira, and S. Bagheri, “A stable uid–structure-interaction solver for low-density rigid bodies using the immersed boundary projection method,” J. Comput. Phys., vol. 305, pp. 300–318, 2016. X. Zheng, R. M. Q. Xue, and S. Beilamowicz, “A coupled sharp-interface immersed boundary- nite-element method for ow-structure interaction with application to human phonation,” J. Biomech. Eng., vol. 132, 2010. I. Borazjani, “Fluid-structure interaction, immersed boundary- nite element method simulations of bio-prosthetic heart valves,” Comput. Methods Appl. Mech. Eng., vol. 257, pp. 103–116, 2013. A. Goza and T. Colonius, “A strongly coupled immersed boundary formulation for thin elastic structures,” J. Comput. Phys., vol. 336, pp. 401–411, 2017. L. P. Tosi and T. Colonius, “Modeling and simulation of a uttering cantilever in channel ow,” J. Fluids Struct., vol. 89, pp. 174–190, 2019. F. Sotiropoulos and X. Yang, “Immersed boundary methods for simulating fluid- structure interaction,” Progress in Aerospace Sciences, vol. 65, pp. 1–21, 2014. W. Kim and H. Choi, “Immersed boundary methods for fluid-structure interaction: A review,” Int. J. Heat Fluid Flow, vol. 75, pp. 301–309, 2019. S. Schwarz, T. Kempe, and J. Fröhlich, “A temporal discretization scheme to com- pute the motion of light particles in viscous flows by an immersed boundary method,” J. Comput. Phys., vol. 281, pp. 591–613, 2015. W. Kim, I. Lee, and H. Choi, “A weak-coupling immersed boundary method for fluid-structure interaction with low density ratio of solid to uid,” J. Comput. Phys., vol. 359, pp. 296–311, 2018. T. Colonius and K. Taira, “A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions,” Computer Methods in Applied Mechanics and Engineering, vol. 197, pp. 25–28, 2008. A. M. Roma, C. S. Peskin, and M. J. Berger, “An adaptive version of the immersed boundary method,” J. Comput. Phys., vol. 153, pp. 509–534, 1999. J. B. Perot, “An analysis of the fractional step method,” J. Comput. Phys., vol. 108, pp. 51–58, 1993. J. Feng, H. Hu, and D. Joseph, “Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid. part 2.couette and poiseuille flows,” J. Fluid Mech., vol. 277, pp. 271–301, 1994. P. Vasseur and R. G. Cox, “The lateral migration of a spherical particle in two- dimensional shear flows,” J. Fluid Mech., vol. 78, p. 385, 1976. K. Namkoong, J. Y. Yoo, and H. G. Choi, “Numerical analysis of two-dimensional motion of a freely falling circular cylinder in an infinite fluid,” J. Fluid Mech., vol. 604, pp. 33–53, 2008. H.-C. Tsai, “Numerical investigation of vertical-axis wind turbines at low reynolds number,” PhD thesis, Caltech, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73971 | - |
| dc.description.abstract | 本研究開發了計算多個複雜幾何剛體之流固耦合問題的沉浸邊界投影法。在 本方法中,一個流固耦合的剛體之動力和其餘多個剛體之運動與流體的不可壓縮 渦度方程式以隱式耦合。為了使此耦合系統能夠非疊代性地、準確地、有效率地 求解,本方法特別選擇於流固耦合剛體 (稱為「目標」) 之附體座標系下進行計 算。流體方程式與剛體的隱式耦合可使本方法於低固流密度比下仍維持數值穩 定。同時為了施加符合正確物理的剛體動力學,本方法修正了剛體內部虛擬流體 的影響並同時過濾了表面應力因數值方法帶來的振盪。如同過往許多的沉浸邊界 投影法,本方法所得的最終離散方程式能以區塊 LU 分解有效率地求解。本方法 以兩個二維測試問題進行驗證:第一個問題為中性浮力圓柱剛體於平板庫葉流中 的漂移,第二個問題為圓柱剛體的自由落體或自由升體。最後,以本方法模擬流 體驅動垂直軸風力發電機的脈衝性啟動,可得各葉片產生的扭矩和中塔的受力。 此資料於未來的後續研究可用於分析垂直軸風力發電機的葉片空氣動力學、中塔 的疲勞破壞及葉片與中塔之間的交互作用。 | zh_TW |
| dc.description.abstract | An immersed boundary projection method for ow-structure interaction problems which are involving rigid bodies with complex geometries is presented. Dynamics of a rigid body interacting with fluid flow and kinematics of other rigid bodies undergoing prescribed motions are coupled implicitly with the incompressible vorticity equations. In particular, the method is formulated in a frame of reference fixed on the rigid body under flow-structure interaction (the target) so that the coupled system can be solved non-iteratively, accurately, and efficiently. The implicit coupling of the fluid solver and dynamics and kinematics of rigid bodies ensures the method being stable for low solid-to- fluid mass ratios. The influence of fictitious fluid in- side the rigid body is considered and the spurious oscillations in surface stresses are filtered to impose physically correct rigid body dynamics. Similar to many predecessors of the immersed boundary projection method, the resulting discrete system is solved efficiently using a block-LU decomposition. The method is then validated with two-dimensional test problems of a neutrally buoyant cylinder migrating in a planar Couette flow and a freely falling or rising cylindrical rigid body. Finally, the impulsive start of a ow-driven vertical-axis wind turbine (VAWT) is simulated to obtain the torques generated by the turbine blades and the forces exerted on the tower, which can be used for detail analysis of the aerodynamics of VAWT, the fatigue of the tower, and the interaction between turbine blades and the tower in future investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:15:22Z (GMT). No. of bitstreams: 1 U0001-2701202110203400.pdf: 4012424 bytes, checksum: 5a7f031c6a126fafa673fbd35bca131f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Acknowledgement i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables viii NOMENCLATURE ix 1 Introduction 1 1.1 Motivation................................................................ 1 1.2 Immersed boundary method ............................................. 1 1.3 Immersed boundary method for FSI problems .......................... 3 1.4 Summary of introduction ................................................ 5 2 Mathematical formulation and numerical methods 7 2.1 Governing equation ...................................................... 7 2.2 Numerical method ....................................................... 11 2.2.1 Spatial discretization and accurate stress filter .................. 11 2.2.2 Temporal discretization and factorization procedure . . . . . . . . 14 3 Veri cations and validations 19 3.1 A neutrally buoyant cylinder migrating in a planar Couette flow ...... 19 3.2 Freely falling/rising circular cylinders ............................. 22 4 Simulation of flow-driven VAWT 25 4.1 Simulation setup and simplified numerical method ..................... 26 4.2 Simulation results ................................................... 28 5 Conclusion 33 References 34 A Alternative form of the incompressible Navier-Stokes equations in a non-inertial frame of reference 37 | |
| dc.language.iso | en | |
| dc.subject | 沉浸邊界法 | zh_TW |
| dc.subject | 流固耦合 | zh_TW |
| dc.subject | 剛體固定座標系 | zh_TW |
| dc.subject | 剛體運動 | zh_TW |
| dc.subject | 精確表面應力 | zh_TW |
| dc.subject | Rigid-bodies dynamics | en |
| dc.subject | Flow-structure interaction | en |
| dc.subject | Body-fixed frame | en |
| dc.subject | Accurate surface stress | en |
| dc.subject | Immersed boundary method | en |
| dc.title | 適用於剛體流固耦合問題的非疊代性沉浸邊界投影法之開發 | zh_TW |
| dc.title | A non-iterative immersed boundary projection method for rigid-body flow-structure interaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊馥菱(Fu-Ling Yang),周逸儒(Yi-Ju Chou) | |
| dc.subject.keyword | 沉浸邊界法,流固耦合,剛體固定座標系,剛體運動,精確表面應力, | zh_TW |
| dc.subject.keyword | Immersed boundary method,Flow-structure interaction,Body-fixed frame,Rigid-bodies dynamics,Accurate surface stress, | en |
| dc.relation.page | 38 | |
| dc.identifier.doi | 10.6342/NTU202100201 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2701202110203400.pdf 未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
