請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73966完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許添本(Tien-Pen Hsu) | |
| dc.contributor.author | Yu-Lun Huang | en |
| dc.contributor.author | 黃郁倫 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:15:11Z | - |
| dc.date.available | 2020-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | [1] 中華民國交通部公路總局,交通部公路總局查詢網。
[2] 交通部運輸研究所(2011),2011年台灣公路容量手冊。 [3] Krammes, R. A., & Crowley, K. W. (1986). Passenger car equivalents for trucks on level freeway segments. Transportation Research Record, (1091). [4] Partha, S. A. H. A., MAHMUD, H. I., HOSSAIN, Q. S., & Islam, M. Z. (2009). Passenger car equivalent (PCE) of through vehicles at signalized intersections in Dhaka Metropolitan City, Bangladesh. IATSS research, 33(2), pp:99-104. [5] Cao NY., Sano K., Tu VT. and Anh NV. 2010. Estimating Capacity and Vehicle Equivalent Unit by Motorcycles at Road Segments in Urban Road in Hanoi Veitnam, Journal ofTransportation Engineering, 138(6), pp:776-785 [6] MINH, Chu Cong; SANO, Kazushi. Analysis of motorcycle effects to saturation flow rate at signalized intersection in developing countries. Journal of the Eastern Asia Society for Transportation Studies, 2003, 5: 1211-1222. [7] PEÑA, Andrés Javier; BOCAREJO, Juan Pablo. Determination of Motorcycle Passenger Car Equivalence for Uninterrupted Flow in an Urban Road of Medellin, Colombia. 2014. [8] ADNAN, Muhammad. Passenger car equivalent factors in heterogenous traffic environment-are we using the right numbers?. Procedia engineering, 2014, 77: pp:106-113. [9] PATEL, Chetan; JOSHI, Gaurang. EQUIVALENCY FACTOR USING OPTIMIZATION FOR INDIAN MIXED TRAFFIC CONDITION. International Journal for Traffic & Transport Engineering, 2015, 5.2. [10] PRETTY, R. L. Traffic signal calculations in relation to junction layout, capacity and delay. Traffic Engineering & Control, 1980, 21.3. [11] Lewis, E. B. (1982). Control of body segment differentiation in Drosophila by the bithorax gene complex. In Genes, Development and Cancer (pp. 239-253). Springer, Boston, MA. [12] 王傳芳(1974),A Study on Flow Characteristics of Mixed Pattern Traffic, C.F. Wang, T.L. Wang [13] 郭敏能(1976),快車道混合車流特性之研究,臺灣大學土木工程學研究所碩士論文。 [14] 周煥昌(1981),混合車流平面交叉路口飽和流量之模擬研究,臺灣大學土木工程學研究所碩士論文。 [15] 吳祚烱(1983),混合車流特性調查分析及右轉車當量模擬之研究,臺灣大學土木工程學研究所碩士論文。 [16] 顏上堯(1987),混合車流狀況下市區號誌交叉口車流運轉特性及容量參數之研究,臺灣大學土木工程學研究所碩士論文。 [17] 盧修群(2013),利用綠燈疏解時間推估混合車道中機車小客車當量-以台中市台灣大道為例,逢甲大學運輸科技與管理學系研究所碩士論文。 [18] 賴朝睿(2018),右轉車輛與行人同一時相對混合直右車道飽和流率之影響分析與改善策略評估,臺灣大學土木工程學研究所碩士論文。 [19] 許添本(1981),號誌化交叉口容量分析及應用之研究:臨界流動方法之發展,臺灣大學土木工程學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73966 | - |
| dc.description.abstract | 混合車流之道路環境為台灣及多數東南亞國家所特有之交通特色,其中又以機車車輛為多數居民主要之交通工具,機車與小客車之駕駛行為特性具有多處不同,如機車不似小客車遵從車道行駛,而會鑽行於車道與車輛之間。為了行車安全及行車效率之考量,國內針對機車車輛之駕駛行為特性設立了特有之道路設計,而此些道路設計形成了機車車輛特有之疏解特性,因此造就了與多數東南亞國家不同之混合車流道路環境。
在道路設計之實務上通常以小客車當量值(Passenger Car Equivalent)將異質車流轉換為同質車流,過去研究中多以駕駛行為特性之因素來估計小客車車當量值,如行車速度、佔有面積與間距等等,然而鮮少以號誌時制設計為考量進行機車小客車當量值之估計。 適當之號誌時制設計可以有效減少交叉口之衝突與延滯,並且提高交叉口之績效與駕駛人之行車效率,而在號誌時制設計中交通流量之多寡恆為重要考量之一,因此機車小客車當量值之估計對於號誌時制設計之影響相當重要,若能求得適當之機車小客車當量值,則可準確估計各方向或各流動之綠燈時間需求,以此設計出最適當之號誌時制。 本研究蒐集不同車流情境之停等車隊疏解時間等資料,以此建立不同車流情境之綠燈時間需求模型,並推估基於綠燈時間需求模型之機車小客車當量值。此外,本研究分別以簡單線性迴歸模型、假設資料服從指數分佈之非線性迴歸模型與二次迴歸模型分析機車車輛數與小客車車輛數之關係,由結果顯示大部分之車流情境較適用於非線性迴歸模型與二次迴歸模型,表示機車車輛數與小客車車輛數之關係應受到不同交通組成而有所變動,以此推論機車小客車當量值應為一變動值。本研究另以最適當之配適迴歸模型求得之機車小客車當量值估計值建立機車小客車當量值推估模式,藉由此模式根據交叉口各流動之車流情境估計適用之機車小客車當量值,並將該機車小客車當量值納入後續號誌時制設計中。 本研究以臨界流動設計方法之概念,研擬最適週期臨界流動重整方法與最適綠燈時間需求臨界流動重整方法,最適週期之臨界流動重整方法以Webster-Cobbe公式求得最適週期長度,並以臨界流動作為分配綠燈時間之依據,而最適綠燈時間需求之臨界流動重整方法則以綠燈時間需求模型求得各流動所需之綠燈時間需求,亦以臨界流動作為分配綠燈時間之依據。求得各個重整之號誌時制後,利用VISSIM微觀車流模擬軟體建立道路環境,並以平均停等延滯與飽和程度做為績效之評估指標。 由結果可知,以適用於不同交叉口車流情境建立之機車小客車當量值推估模式求得之機車小客車當量值除了能降低整體交叉口之停等延滯,亦能滿足交叉口各個方向與各個流動之綠燈時間需求。因此,本研究認為在設計號誌時制時應將停等車隊之疏解時間納入考量,始能展現機車停等區得以在短時間內疏解機車之特性,此外,本研究認為應根據不同車流情境給予相對應之機車小客車當量值,故根據所得之最適機車小客車當量值給予在不同混合車道總疏解時間與混合比之車流情境下所適用之機車小客車當量值建議值,當混合車道總疏解時間大於50秒且混合比大於50%時之機車小客車當量值應介於0.00-0.10,當混合車道總疏解時間大於50秒且混合比小於50%時之機車小客車當量值應介於0.10-0.15,當混合車道總疏解時間介於30秒至50秒且混合比大於30%時之機車小客車當量值應介於0.15-0.20,當混合車道總疏解時間介於30秒至50秒且混合比小於30%時之機車小客車當量值應介於0.20-0.30,當混合車道總疏解時間小於30秒時之機車小客車當量值應介於0.20-0.30。 | zh_TW |
| dc.description.abstract | Mixed traffic flow is the specific characteristic for Taiwan and some Southeast Asian countries. Besides, the scooter is the main transportation mode in these countries. The driving behavior of the scooter is quite different from that of the car. For example, the scooter will filter between lanes and vehicles rather than follow the lane discipline. In the consideration of the driving safety and driving efficiency, there are specific road designs for the driving behavior of the scooter in domestic. The road designs cause the specific departing property of the scooter and also create the mixed traffic flow different from some Southeast Asian countries for Taiwan.
It is common that the heterogeneous traffic flow is converted into homogeneous traffic flow by Passenger Car Equivalent (PCE). In the past, the factors which can indicate the driving behavior are used to estimate Passenger Car Equivalent of scooter which are traffic speed, occupied space, headway, and so on. However, it is few to estimate the Passenger Car Equivalent of scooter considering the signal timing design. The appropriate signal timing can not only reduce the conflict and delay in the intersection effectively, but also improve the performance of the intersection and the driving efficiency. Among the signal timing design, traffic flow will be one of the vital considerations. Therefore, the estimation of Passenger Car Equivalent of scooter is quite important to the signal timing. The right Passenger Car Equivalent of scooter can bring the correct green-split demand for each direction or each movement and design the most appropriate signal timing. In this study, the data of the departure time for the stop queue is collected for constructing the Green-Split Demand Model (G-D model) under different traffic conditions and estimating the Passenger Car Equivalent of scooter based on Green-Split Demand Model. Moreover, the different Passenger Car Equivalent of scooter by the different traffic conditions are considered in this study. Besides, there are three kinds of regression models which are the simple linear regression model, the nonlinear regression model with the exponential distribution, and the quadratic regression model. It is found that the most of traffic conditions are more suitable to the nonlinear regression models and the quadratic regression models which means that the relationship between the amount of scooters and cars should vary by the different traffic conditions. It is concluded that the Passenger Car Equivalent of scooter should be a varied value. In this study, the estimated models for the Passenger Car Equivalent are constructed by the estimated values of Passenger Car Equivalent from the most appropriate regression model. By the estimated models, the Passenger Car Equivalent of scooter can be estimated based on different traffic conditions and those values are applied to the successive design for the signal timing. In this study, the critical movement signal re-timing method based on the cycle length and the critical movement signal re-timing method based on the green-split demand are planned based on the concept of Critical Movement Method. The critical movement signal re-timing method based on the cycle length calculates the most appropriate cycle length by Webster-Cobbe Formula and distributes the green-split by the critical movement. The critical movement signal re-timing method based on the green-split demand calculates the green-split demand required by each movement by Green-Split Demand Model and also distributes the green-split by the critical movement. The microscopic traffic simulation software, VISSIM, is used to construct the road environment with the signal re-timing programs and the average stop delay and the degree of saturation are used to be the performance indicators. It is found that the signal re-timing method with the Passenger Car Equivalent of scooter estimated by the regression model based on each intersection can not only reduce the average stop delay of the intersection, but also satisfy the green-split demand of each direction and each movement. Therefore, the result indicates the considerations of the departure time of stop queue can show the property of the starting waiting zone which can depart substantial amounts of scooter in a short period. Besides, the varied Passenger Car Equivalent of scooter for different traffic condition is essential to the signal timing design. The suggested values of Passenger Car Equivalent are given in the traffic conditions with the different total departure time in the mixture lane and the different mixture rates. The value of Passenger Car Equivalent should be 0.00 to 0.10 when the total departure time in the mixture lane is lager than 50 seconds and the mixture rate is lager than 50%. The value of Passenger Car Equivalent should be 0.10 to 0.15 when the total departure time in the mixture lane is lager than 50 seconds and the mixture rate is smaller than 50%. The value of Passenger Car Equivalent should be 0.15 to 0.20 when the total departure time in the mixture lane is between 30 to 50 seconds and the mixture rate is larger than 30%. The value of Passenger Car Equivalent should be 0.20 to 0.30 when the total departure time in the mixture lane is between 30 to 50 seconds and the mixture rate is smaller than 30%. The value of Passenger Car Equivalent should be 0.20 to 0.30 when the total departure time in the mixture lane is smaller than 30 seconds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:15:11Z (GMT). No. of bitstreams: 1 ntu-108-R06521527-1.pdf: 3844866 bytes, checksum: 41968bfd2f1a7f54832cfa6dc6bad9bb (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III Abstract V 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍 3 1.4 研究流程與架構 4 第二章 文獻回顧 7 2.1 機車小客車當量值 7 2.1.1 小客車當量值之因素與估計方法 7 2.1.2 國外針對機車小客車當量值之研究 10 2.1.3 國內針對機車小客車當量值之研究 11 2.2 號誌時制設計方法 13 2.2.1 Webster-Cobbe公式 13 2.2.2 臨界流動定時號誌時制設計方法 14 第三章 資料蒐集與分析 17 3.1 資料蒐集方法 17 3.2 車流資料分析 21 3.3 以飽和流率法推估機車小客車當量值 26 3.4 小結 30 第四章 綠燈時間需求模型之建立 31 4.1 綠燈時間需求模型 31 4.2 純小客車車流情境 33 4.3 純機車車流情境 34 4.4 混合車流情境 37 4.5 基於綠燈時間需求模型之機車小客車當量值 39 第五章 機車小客車當量值推估模式之建立 41 5.1 模式建立構想 41 5.2 不同交叉口之機車小客車當量值推估模式 42 5.2.1 機車車輛數與小客車車輛數之配適模型 42 5.2.2 機車小客車當量值之推估 49 5.2.3 機車小客車當量值推估模式之建立 54 5.3 不同車道位置之機車小客車當量值推估模式 55 5.3.1 機車車輛數與小客車車輛數之配適模型 55 5.3.2 機車小客車當量值之推估 58 5.3.3 機車小客車當量值推估模式之建立 61 5.4 所有情境下之機車小客車當量值推估模式 62 5.4.1 機車車輛數與小客車車輛數之配適模型 62 5.4.2 機車小客車當量值之推估 64 5.4.3 機車小客車當量值推估模式之建立 66 5.5 小結 67 第六章 案例分析 73 6.1 案例交叉口之基本資料 73 6.1.1 道路幾何資料 73 6.1.2 交通流量 74 6.1.3 號誌時制 76 6.2 號誌時制重整方案之研擬 77 6.2.1 號誌時制重整方案之介紹 77 6.2.2 流動型態之確認 80 6.2.3 最小綠燈時間 81 6.2.4 最適週期之臨界流動重整方法 82 6.2.5 最適綠燈時間需求之臨界流動重整方法 83 6.3 結果分析 87 第七章 結論與建議 99 7.1 結論 99 7.2 建議 102 附錄A 最適週期臨界流動重整方法計算過程 105 附錄B 最適綠燈時間需求臨界流動重整方法計算過程 121 參考文獻 133 | |
| dc.language.iso | zh-TW | |
| dc.subject | 機車小客車當量值 | zh_TW |
| dc.subject | VISSIM | zh_TW |
| dc.subject | 臨界流動設計方法 | zh_TW |
| dc.subject | Webster-Cobbe公式 | zh_TW |
| dc.subject | 號誌時制 | zh_TW |
| dc.subject | 混合車流 | zh_TW |
| dc.subject | Critical Movement Method | en |
| dc.subject | Signal Timing | en |
| dc.subject | Passenger Car Equivalent of Scooter | en |
| dc.subject | VISSIM | en |
| dc.subject | Webster-Cobbe Formula | en |
| dc.subject | Heterogeneous traffic | en |
| dc.title | 號誌時制設計適用之機車小客車當量值分析 | zh_TW |
| dc.title | Analysis of Passenger Car Equivalent of Scooter for Signal Timing Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃台生(Tai-Shen Huang),黃國平(Kuo-Ping Hwang) | |
| dc.subject.keyword | 混合車流,機車小客車當量值,號誌時制,Webster-Cobbe公式,臨界流動設計方法,VISSIM, | zh_TW |
| dc.subject.keyword | Heterogeneous traffic,Passenger Car Equivalent of Scooter,Signal Timing,Webster-Cobbe Formula,Critical Movement Method,VISSIM, | en |
| dc.relation.page | 134 | |
| dc.identifier.doi | 10.6342/NTU201903206 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
