Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73938
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張仁和(Jen-Ho Chang)
dc.contributor.authorQi-Wen Dingen
dc.contributor.author丁麒文zh_TW
dc.date.accessioned2021-06-17T08:14:19Z-
dc.date.available2021-02-22
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-01-27
dc.identifier.citationAppendix D. (2005). In R. Hassan, R. Scholes, N. Ash (Eds.), Ecosystems and human well-being: Vol. 1. Current state and trends (pp. 893-899). Washington: Island Press. https://www.millenniumassessment.org/documents/document.767.aspx.pdf
Bauer, D. J., Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40, 373-400. doi:10.1207/s15327906mbr4003_5
Benson, L., Ram, N., Almeida, D. M., Zautra, A. J., Ong, A. D. (2018). Fusing biodiversity metrics into investigations of daily life: Illustrations and recommendations with emodiversity. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 73, 75–86. doi:10.1093/geronb/gbx025
Bishara, A. J., Hittner, J. B. (2017). Confidence intervals for correlations when data are not normal. Behavior Research Methods, 49, 294–309. doi:10.3758/s13428-016-0702-8
Brown, N. J. L., Coyne, J. C. (2017). Emodiversity: Robust predictor of outcomes or statistical artifact? Journal of Experimental Psychology: General, 146, 1372–1377. doi:10.1037/xge0000330
Brown, N. J. L., Sokal, A. D., Friedman, H. L. (2013). The complex dynamics of wishful thinking: The critical positivity ratio. American Psychologist, 68, 801–813. doi:10.1037/a0032850
Casella, G., Berger, R. L. (2002). Statistical inference (2nd ed.). Pacific Grove, CA: Duxbury/Thomson Learning.
Chao, A., Chiu, C. H., Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3599-3609. doi:10.1098/rstb.2010.0272
Chen, R., Rafaeli, E., Ziv-Beiman, S., Bar-Kalifa, E., Solomonov, N., Barber, J. P., Peri, T., Atzil-Slonim, D. (2020). Therapeutic technique diversity is linked to quality of working alliance and client functioning following alliance ruptures. Journal of Consulting and Clinical Psychology, 88, 844–858. doi:10.1037/ccp0000490
Clifford, G., Hitchcock, C., Dalgleish, T. (2020). Negative and positive emotional complexity in the autobiographical representations of sexual trauma survivors. Behaviour Research and Therapy, 126. doi:10.1016/j.brat.2020.103551
Cover, T., Thomas, J. (2006). Elements of information theory (2nd ed.). Hoboken, N.J.: Wiley-Interscience. https://onlinelibrary.wiley.com/doi/book/10.1002/047174882X
Dejonckheere, E., Mestdagh, M., Houben, M., Rutten, I., Sels, L., Kuppens, P., Tuerlinckx, F. (2019). Complex affect dynamics add limited information to the prediction of psychological well-being. Nature Human Behaviour, 3, 478-491. doi:10.1038/s41562-019-0555-0
Drewelies, J., Koffer, R. E., Ram, N., Almeida, D. M., Gerstorf, D. (2019). Control diversity: How across-domain control beliefs are associated with daily negative affect and differ with age. Psychology and Aging, 34, 625–639. doi:10.1037/pag0000366
Efron, B. (1981). Nonparametric standard errors and confidence intervals. Canadian Journal of Statistics, 9, 139-158. doi:10.2307/3314608
Efron, B., Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 54-75.
Fredrickson, B. L., Losada, M. F. (2005). Positive affect and the complex dynamics of human flourishing. American Psychologist, 60, 678–686. doi:10.1037/0003-066X.60.7.678
Fredrickson, B. L. (2013). Updated thinking on positivity ratios. American Psychologist, 68, 814–822. doi:10.1037/a0033584
Grossmann, I., Huynh, A. C., Ellsworth, P. C. (2016). Emotional complexity: Clarifying definitions and cultural correlates. Journal of Personality and Social Psychology, 111, 895–916. doi:10.1037/pspp0000084
Grossmann, I., Oakes, H., Santos, H. C. (2019). Wise reasoning benefits from emodiversity, irrespective of emotional intensity. Journal of Experimental Psychology: General, 148, 805–823. doi:10.1037/xge0000543
Grühn, D., Lumley, M. A., Diehl, M., Labouvie-Vief, G. (2013). Time-based indicators of emotional complexity: Interrelations and correlates. Emotion, 13, 226–237. doi:10.1037/a0030363
Harrison, D. A., Klein, K. J. (2007). What's the difference? Diversity constructs as separation, variety, or disparity in organizations. Academy of Management Review, 32, 1199-1228. doi:10.5465/amr.2007.26586096
Hämäläinen, R. P., Luoma, J., Saarinen, E. (2014). Mathematical modeling is more than fitting equations. American Psychologist, 69, 633–634. doi:10.1037/a0037048
Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432. doi:10.2307/1934352
Hurlbert, S. H. (1971). The nonconcept of species diversity: A critique and alternative parameters. Ecology, 52, 577-586. doi:10.2307/1934145
Jones, J. A., Waller, N. G. (2013). Computing confidence intervals for standardized regression coefficients. Psychological Methods, 18, 435. doi:10.1037/a0033269
Jost, L. (2006). Entropy and diversity. Oikos, 113, 363-375. doi:10.1111/j.2006.0030-1299.14714.x
Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427-2439. doi:10.1890/06-1736.1
Jost, L. (2009). Mismeasuring biological diversity: Response to Hoffmann and Hoffmann (2008). Ecological Economics, 68, 925-928. doi:10.1016/j.ecolecon.2008.10.015
Layous, K., Sweeny, K., Armenta, C., Na, S., Choi, I., Lyubomirsky, S. (2017). The proximal experience of gratitude. PLoS ONE, 12. doi:10.1371/journal.pone.0179123
Lee, S., Koffer, R. E., Sprague, B. N., Charles, S. T., Ram, N., Almeida, D. M. (2018). Activity diversity and its associations with psychological well-being across adulthood. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 73, 985–995. doi:10.1093/geronb/gbw118
Koffer, R. E., Ram, N., Conroy, D. E., Pincus, A. L., Almeida, D. M. (2016). Stressor diversity: Introduction and empirical integration into the daily stress model. Psychology and Aging, 31, 301–320. doi:10.1037/pag0000095
Kerr, M. L., Rasmussen, H. F., Buttitta, K. V., Smiley, P. A., Borelli, J. L. (2020). Exploring the complexity of mothers’ real-time emotions while caregiving. Emotion. Advance online publication. doi:10.1037/emo0000719
Krone, T., Albers, C. J., Kuppens, P., Timmerman, M. E. (2018). A multivariate statistical model for emotion dynamics. Emotion, 18, 739–754. doi:10.1037/emo0000384
MacArthur, R. H. (1965). Patterns of species diversity. Biological Reviews, 40, 510-533. doi:10.1111/j.1469-185X.1965.tb00815.x
Mestdagh, M., Pe, M., Pestman, W., Verdonck, S., Kuppens, P., Tuerlinckx, F. (2018). Sidelining the mean: The relative variability index as a generic mean-corrected variability measure for bounded variables. Psychological Methods, 23, 690–707. doi:10.1037/met0000153
Ong, A. D., Benson, L., Zautra, A. J., Ram, N. (2018). Emodiversity and biomarkers of inflammation. Emotion, 18, 3–14. doi:10.1037/emo0000343
Patil, G. P., Taillie, C. (1982). Diversity as a concept and its measurement. Journal of the American Statistical Association, 77, 548-561. doi:10.1080/01621459.1982.10477845
Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics, 5, 285-307.
Quoidbach, J., Gruber, J., Mikolajczak, M., Kogan, A., Kotsou, I., Norton, M. I. (2014). Emodiversity and the emotional ecosystem. Journal of Experimental Psychology: General, 143, 2057–2066. doi:10.1037/a0038025
Quoidbach, J., Mikolajczak, M., Gruber, J., Kotsou, I., Kogan, A., Norton, M. I. (2018). Robust, replicable, and theoretically-grounded: A response to Brown and Coyne’s (2017) commentary on the relationship between emodiversity and health. Journal of Experimental Psychology: General, 147, 451–458. doi:10.1037/xge0000400
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x
Thompson, E. R. (2007). Development and validation of an internationally reliable short-form of the Positive and Negative Affect Schedule (PANAS). Journal of Cross-Cultural Psychology, 38, 227–242. doi:10.1177/0022022106297301
Urban-Wojcik, E. J., Mumford, J. A., Almeida, D. M., Lachman, M. E., Ryff, C. D., Davidson, R. J., Schaefer, S. M. (2020). Emodiversity, health, and well-being in the midlife in the United States (MIDUS) daily diary study. Emotion. Advance online publication. doi:10.1037/emo0000753
Wang, L., Hou, Y., Chen, Z. (2020). Are rich and diverse emotions beneficial? The impact of emodiversity on tourists’ experiences. Journal of Travel Research. doi:10.1177/0047287520919521
Warnes, G. R., Bolker, B., Lumley, T. (2018). gtools: Various R programming tools. R package version 3.8.1. https://CRAN.R-project.org/package=gtools
Watson, D., Clark, L. A., Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070. doi:10.1037/0022-3514.54.6.1063
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73938-
dc.description.abstractQuoidbach等人(2014)採用資訊理論與生物多樣性研究常用的熵(Shannon’s entropy)來測量個體的情緒多樣性(emodiversity)。雖然曾有學者反對採用該指標來表徵情緒多樣性,但該指標仍在心理學研究中被廣泛使用。本文先探討以往對熵指標在情緒多樣性的辯論,並以實徵資料來重新評估用熵作為情緒多樣性的合理性。本研究更延伸出以往辯論較忽略的兩大缺陷:(一)該指標以李克式量尺(Likert-type scale)計算機率並無理論基礎;(二)在實徵研究常用的李克式量尺點數(例如5點至7點)下,該指標與情緒豐富度(richness)有極高的線性關聯。在實徵資料(N = 962)中,本研究分析在五點李克式量尺中不同題目數(5、10與20題)下正負向情緒之熵指標,也發現熵與情緒豐富度有極高的線性關聯(rs = .94 - .98)。此外,熵的變異可被平均數、相對標準差及二者交互作用之線性組合良好解釋(解釋變異量介於78%至92%)。這些結果皆顯示利用熵指標測量情緒多樣性仍有其效度上的疑慮。因此本文建議,當情緒是以五點李克式量尺測量時,研究者不應採用熵指標測量情緒多樣性,且該指標主要以其平均數跟相對標準差即可指稱之。zh_TW
dc.description.abstractThis article reexamines the previous debate on Quoidbach et al.’s (2014) entropy-based emodiversity index and evaluates its utility from theoretical and empirical aspects. We mainly focus on the consequences of applying Shannon’s (1948) entropy to Likert-type scale. From the previous debate, we extend and summarize two severe defects of the entropy-based emodiversity index: (a) calculating probability from Likert-type scale is mathematically unjustifiable; (b) there is extremely high collinearity between the entropy index and richness when the emotion measurement has limited range, which usually occurs in empirical studies. We also collected data (N = 962) and analyzed the entropy scores for positive and negative affect under 5-point scale with different numbers of items (5-, 10-, and 20-item). The results showed that under 5-point scale Quoidbach et al.’s index is strongly correlated with richness (rs ranged from .94 to .98) and that the variation of their index can be simply explained by the linear combination of mean, relative standard deviation, and their interaction term (R2s ranged from .78 to .92). Hence, the validity of using entropy to measure diversity in a 5-point scale is questionable and we advise researchers to prohibit the use of this index to represent emodiversity.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:14:19Z (GMT). No. of bitstreams: 1
U0001-2701202116511900.pdf: 2435307 bytes, checksum: 2747c4a875a9f6dfa696eaf826d23665 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents1.Introduction...1
2.Debates on Quantification of Emodiversity by Entropy...5
2.1 Upper Bound of Richness...5
2.2 Variation of Evenness and Emodiversity...7
2.3 Calculation of Probability in Emodiversity...13
2.4 Relative Abundance in Emodiversity...14
2.5 Interpretation of Emodiversity...16
2.6 Summary from Previous Literature...18
3.Empirical Data Analysis...19
3.1 Participants and Procedures...19
3.2 Correlations of Emodiversity Scores from Different Item Sizes...20
3.3 Richness and Emodiversity in Positive and Negative Affect...21
3.4 Relationships among Emodiversity, Mean, and Standard Deviation...24
4.Discussion...35
4.1 Evaluation of the Entropy-based Emodiversity Index...35
4.2 Research Limitations and Future Directions...36
5.Conclusion...38
6.References...40
dc.language.isoen
dc.subject李克式量尺zh_TW
dc.subject熵zh_TW
dc.subject情緒多樣性zh_TW
dc.subject多樣性zh_TW
dc.subjectentropyen
dc.subjectemotionen
dc.subjectLikert-type scaleen
dc.subjectemodiversityen
dc.subjectdiversityen
dc.title再探情緒多樣性指標之爭議zh_TW
dc.titleRevisiting the Index of Entropy-based Emodiversityen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-8965-7487
dc.contributor.coadvisor徐永豐(Yung-Fong Hsu)
dc.contributor.oralexamcommittee邱春火(Chun-Huo Chiu),李宣緯(Hsuan-Wei Lee)
dc.subject.keyword多樣性,情緒多樣性,熵,李克式量尺,zh_TW
dc.subject.keyworddiversity,emotion,emodiversity,entropy,Likert-type scale,en
dc.relation.page47
dc.identifier.doi10.6342/NTU202100208
dc.rights.note有償授權
dc.date.accepted2021-01-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
Appears in Collections:心理學系

Files in This Item:
File SizeFormat 
U0001-2701202116511900.pdf
  Restricted Access
2.38 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved