Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73895Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林致廷(Chih-Ting Lin) | |
| dc.contributor.author | Yu-Chia Chen | en |
| dc.contributor.author | 陳昱佳 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:13:04Z | - |
| dc.date.available | 2022-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | [1] S. Singh and Y. N. Mohapatra, 'Trap Kinetics in Solution-Processed Organic Thin-Film Transistors.' IEEE Electron Device Letters, vol. 37, no. 1, pp. 35-38, 2016.
[2] S. Y. Park, M. Park, and H. H. Lee, 'Cooperative polymer gate dielectrics in organic thin-film transistors.' Applied Phyics Letters, vol. 85, no. 12, pp. 2283-2285, 2004. [3] M. Na and S.W. Rhee, 'Electronic characterization of Al/PMMA[poly(methyl methacrylate)]/p-Si and Al/CEP(cyanoethyl pullulan)/p-Si structures.' Organic Electronics, vol. 7, no. 4, pp. 205-212, 2006. [4] H. P. Wong, 'Beyond the conventional transistor.' IBM Journal of Research and Development, vol. 46, no. 2.3, pp. 133-168, 2002. [5] P.H. Chen and C.T. Lin, 'Effects of silicon Interface and frequency dependence in solution-processed high-K poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) dielectric characteristics.' Thin Solid Films, vol. 628, pp. 75-80, 2017. [6] N. Tsutsumi, A. Ueyasu, W. Sakai, and C. K. Chiang, 'Crystalline structures and ferroelectric properties of ultrathin films of vinylidene fluoride and trifluoroethylene copolymer.' Thin Solid Films, vol. 483, no. 1, pp. 340-345, 2005. [7] Q. M. Zhang, H. Xu, F. Fang, Z.-Y. Cheng, F. Xia, and H. You, 'Critical thickness of crystallization and discontinuous change in ferroelectric behavior with thickness in ferroelectric polymer thin films.' Journal of Applied Physic, vol. 89, no. 5, pp. 2613-2616, 2001. [8] S. W. Jung, J. K., Lee, Y. S., Kim, S. M. Yoon, I. K. You, B. G. Yu, Y. Y. Noh, 'Top-gate ferroelectric thin-film-transistors with P(VDF-TrFE) copolymer.' Current Applied Physics, vol. 10, no. 1, Supplement, pp. e58-e61, 2010. [9] S.M. Yoon, S.W. Jung, S. Yang, S.H. Ko Park, B.G. Yu, and H. Ishiwara, 'Bending characteristics of ferroelectric poly(vinylidene fluoride trifluoroethylene) capacitors fabricated on flexible polyethylene naphthalate substrate.' Current Applied Physics, vol. 11, no. 3, Supplement, pp. S219-S224, 2011. [10] S. Lim, A. C. Rastogi, and S. B. Desu, 'Electrical characteristics of organic ferroelectric FET integrated with Si using P(VDF-TrFE) copolymer films for nonvolatile memory devices.' in 2006 15th ieee international symposium on the applications of ferroelectrics, 2006, pp. 124-127. [11] T. Y. Kim, G. Anoop, Y. J. Son, S. H. Kim, E. Lee, and J. Y. Jo, 'Ferroelectric-mediated filamentary resistive switching in P (VDF-TrFE)/ZnO nanocomposite films.' Physical Chemistry Chemical Physics, vol. 20, no. 23, pp. 16176-16183, 2018. [12] S. H. Lim, A. C. Rastogi, and S. B. Desu, 'Electrical properties of metal-ferroelectric-insulator-semiconductor structures based on ferroelectric polyvinylidene fluoride copolymer film gate for nonvolatile random access memory application.' Journal of Applied Physics, vol. 96, no. 10, pp. 5673-5682, 2004. [13] N. Yamauchi, 'A metal-insulator-semiconductor (MIS) device using a ferroelectric polymer thin film in the gate insulator.' Japanese journal of applied physics, vol. 25, no. 4R, p. 590, 1986. [14] M. T. Buscaglia, V. Buscaglia, M. Viviani, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni, C. Harnagea, and Z. Zhao, 'Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics.' Nanotechnology, vol. 15, no. 9, p. 1113, 2004. [15] S. J. Kang, Y. J. Park, I. Bae, K. J. Kim, H. C. Kim, S. Bauer, E. L. Thomas, and C. Park, 'Printable Ferroelectric PVDF/PMMA Blend Films with Ultralow Roughness for Low Voltage Non-Volatile Polymer Memory.' Advanced Functional Materials vol. 19, no. 17, pp. 2812-2818, 2009. [16] E. Venkatragavaraj, B. Satish, P. R. Vinod, and M. S. Vijaya, 'Piezoelectric properties of ferroelectric PZT-polymer composites.' Journal of Physics D: Applied Physics, vol. 34, no. 4, p. 487, 2001. [17] S. Demirezen, A. Kaya, Ş. Altındal, and İ. Uslu, 'The energy density distribution profile of interface traps and their relaxation times and capture cross sections of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors at room temperature.' Polymer Bulletin, vol. 74, no. 9, pp. 3765-3781, 2017. [18] H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, 'Evidence of low interface trap density in GeO2∕Ge metal-oxide-semiconductor structures fabricated by thermal oxidation.' Applied Physics Letters, vol. 93, no. 3, p. 032104, 2008. [19] E. H. Nicollian, J. R. Brews, and E. H. Nicollian, MOS (metal oxide semiconductor) physics and technology. Wiley New York et al., 1982. [20] F.C. Chiu, 'Interface characterization and carrier transportation in metal/HfO2/silicon structure.' Journal of Applied Physics, vol. 100, no. 11, p. 114102, 2006. [21] J. Robertson, 'Interfaces and defects of high-K oxides on silicon.' Solid-State Electronics, vol. 49, no. 3, pp. 283-293, 2005/03/01/ 2005. [22] D. Barlage R. Arghavani, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, A. Murthy, B. Roberds, P. Stokley, and R. Chau, 'High-frequency response of 100 nm integrated CMOS transistors with high-K gate dielectrics.' in International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), pp. 10.6.1-10.6.4, 2001. [23] H.T. Lue, C. Y. Liu, and T. Y. Tseng, 'An improved two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric.' IEEE Electron Device Letters, vol. 23, no. 9, pp. 553-555, 2002. [24] A. K. Jonscher, 'Dielectric relaxation in solids.' Journal of Physics D: Applied Physics, vol. 32, no. 14, p. R57, 1999. [25] E. H. Nicollian and A. Goetzberger, 'The si-sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique.' The Bell System Technical Journal, vol. 46, no. 6, pp. 1055-1033, 1967. [26] B. Ricco, P. Olivo, T. N. Nguyen, T. Kuan, and G. Ferriani, 'Oxide-thickness determination in thin-insulator MOS structures.' IEEE Transactions on Electron Devices, vol. 35, no. 4, pp. 432-438, 1988. [27] S. W. Lee, 'A capacitance-based method for experimental determination of metallurgical channel length of submicron LDD MOSFETs.' IEEE Transactions on Electron Devices, vol. 41, no. 3, pp. 403-412, 1994. [28] C. Huang, J. V. Faricelli, and N. D. Arora, 'A new technique for measuring MOSFET inversion layer mobility.' IEEE Transactions on Electron Devices, vol. 40, no. 6, pp. 1134-1139, 1993. [29] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006. [30] F.C. Chiu, 'A review on conduction mechanisms in dielectric films.' Advances in Materials Science and Engineering, vol. 2014, 2014. [31] M. Hirose, M. Hiroshima, T. Yasaka, S. Miyazaki, 'Characterization of silicon surface microroughness and tunneling transport through ultrathin gate oxide.' Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 12, no. 4, pp. 1864-1868, 1994. [32] A. S. Spinelli, A. Pacelli, and A. L. Lacaita, 'An improved formula for the determination of the polysilicon doping.' IEEE Electron Device Letters, vol. 22, no. 6, pp. 281-283, 2001. [33] H. Xu, 'Dielectric properties and ferroelectric behavior of poly (vinylidene fluoride‐trifluoroethylene) 50/50 copolymer ultrathin films.' Journal of applied polymer science, vol. 80, no. 12, pp. 2259-2266, 2001. [34] K. J. Yang and H. Chenming, 'MOS capacitance measurements for high-leakage thin dielectrics.' IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1500-1501, 1999. [35] X. Zhang, H. Zhu, C. Cheng, T. Yu, D. Zhang, H. Zhong, X. Li, Y. Cheng, L. Cheng, J. Sun, and B. Chen 'Single frequency correction based on three-element model for thin dielectric MOS capacitor.' Solid-State Electronics, vol. 129, pp. 97-102, 2017. [36] M. Alexe, 'Measurement of interface trap states in metal–ferroelectric–silicon heterostructures,' Applied physics letters, vol. 72, no. 18, pp. 2283-2285, 1998. [37] G. Ersöz, Y. İ, Y. Azizian-Kalandaragh, O. İ, and A. Ş, 'Investigation of Electrical Characteristics in Al/CdS-PVA/p-Si (MPS) Structures Using Impedance Spectroscopy Method.' IEEE Transactions on Electron Devices, vol. 63, no. 7, pp. 2948-2955, 2016. [38] I. Yücedağ, A. Kaya, Ş. Altındal, and I. J. C. P. B. Uslu, 'Frequency and voltage-dependent electrical and dielectric properties of Al/Co-doped PVA/p-Si structures at room temperature.' Chinese Physics B, vol. 23, no. 4, p. 047304, 2014. [39] K. Henkel, I. Lazareva, Y. Koval, P. Müller, and D. Schmeißer 'Electrical investigations on metal/ferroelectric/insulator/semiconductor structures using poly [vinylidene fluoride trifluoroethylene] as ferroelectric layer for organic nonvolatile memory applications.' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 27, no. 1, pp. 504-507, 2009. [40] 陳柏翰, '有機高介電材料P(VDF-TrFE-CTFE)異質接面性質之探討與元件研發,' 博士, 電子工程學研究所, 國立臺灣大學, 台北市, 2017. [41] S.W. Jung, S. M. Yoon, S. Y. Kang, K. J. Choi, W. S. Shin, and B. G. Yu, 'Low voltage operation of nonvolatile ferroelectric capacitors using poly (vinylidene fluoride-trifluoroethylene) copolymer and thin Al2O3 insulating layer.' Electrochemical and Solid-State Letters, vol. 12, no. 9, pp. H325-H328, 2009. [42] H.W. Lu and J.G. Hwu, 'Roles of interface and oxide trap density in the kinked current behavior of Al/SiO2/Si(p) structures with ultra-thin oxides,' Applied Physics A, vol. 115, no. 3, pp. 837-842, 2014. [43] B. Dickens, E. Balizer, A. S. DeReggi, and S. C. Roth, 'Hysteresis measurements of remanent polarization and coercive field in polymers.' Journal of applied physics, vol. 72, no. 9, pp. 4258-4264, 1992. [44] R. Kalbitz, P. Frübing, R. Gerhard, and D. M. Taylor, 'Stability of polarization in organic ferroelectric metal-insulator-semiconductor structures.' Applied Physics Letters, vol. 98, no. 3, p. 033303, 2011. [45] P. Schmidt and W. Michel, 'Anodic formation of oxide films on silicon.' Journal of the electrochemical society, vol. 104, no. 4, pp. 230-236, 1957. [46] C. C. Ting, Y. H. Shin, and J. G. Hwu, 'Ultralow leakage characteristics of ultrathin gate oxides (/spl sim/3 nm) prepared by anodization followed by high-temperature annealing.' IEEE Transactions on Electron Devices, vol. 49, no. 1, pp. 179-181, 2002. [47] T. F. Hung, H. Wong, Y. Cheng, and C. K. Pun, 'A New Design of Anodic Oxidation Reactor for High‐Quality Gate Oxide Preparation.' Journal of the Electrochemical Society, vol. 138, no. 12, pp. 3747-3750, 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73895 | - |
| dc.description.abstract | 近年來,有機薄膜電晶體已被廣泛研究,大多數有機薄膜電晶體採用二氧化矽作為絕緣層;然而二氧化矽製程溫度對於有機薄膜電晶體未來發展將會受限,利用有機介電材料之製程溫度較低之特性,可以有效的克服製程溫度上的問題。因此本篇論文針對偏二氟乙烯-三氟乙烯共聚物(poly(vinylidene fluoride-trifluoroethylene)),P(VDF-TrFE)作為金氧半導體元件進行 P(VDF-TrFE) 與矽之介面性質探討。在論文第二章中,對此元件進行了基本的電性分析,包括:漏電流、介電常數、P(VDF-TrFE) 與矽之介面層特性,並且透過電導法計算P(VDF-TrFE) 與矽之介面捕陷電荷。且由介面層分析的結果可得知在P(VDF-TrFE) 與矽之介面處生成低介電常數介面層,因此在論文第三章中,我們探討了低介電常數介面層形成之原因,並且提出介面捕陷電荷影響接近介面層之P(VDF-TrFE)之電偶極非線性極化之推論,導致低介電常數介面層效應更為明顯,也透過實驗的方式去驗證此推論。為了避免此機制導致元件之穩定度降低,在論文第四章中,利用二氧化矽做為緩衝層之元件進行分析並將結果與未使用緩衝層之元件進行比較;由比較結果可得知有緩衝層之元件,其電性特性明顯提升,如較低的漏電流,較高之介面常數值以及較不明顯之低介電常數介面層;此外也發現使用SiO2作為緩衝層之元件,其漏電流在閘極偏壓約為+20V時出現電流劇烈上升之現象,藉由比較有無SiO2緩衝層元件漏電流特性差異,我們也提出SiO2與P(VDF-TrFE)之間所形成之氧空缺為造成此現象之主要因素。 | zh_TW |
| dc.description.abstract | Recently, the organic thin-film transistors (OTFTs) have attracted a lot of attentions. Most of OTFTs studies utilize general organic dielectric materials, such as Polyvinylpyrrolidone (PVP), as an insulator in the transistor structure. However, the typical organic dielectric materials usually have low dielectric constant and suffers from leakage. In order to overcome this issue, we investigate the electrical characteristics of high-k organic material poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) with MIS structure in chapter 2, such as leakage current, dielectric constant, and the interfacial characteristics between P(VDF-TrFE) and silicon junction. The interface trap density can be calculated by conductance method. In chapter 3, we suggest that the interface trap charges induce lower dielectric constant interface layer in an organic ferroelectric capacitor, and we though the experimental to confirm this mechanism. In order to avoid the above phenomenon, we use the SiO2 as the buffer layer. The electrical characteristics of metal-ferroelectric-oxide-semiconductor (MFOS) and metal-ferroelectric-semiconductor (MFS) capacitors are compared in chapter 4. Comparing these two experiment results, we find the MFOS device which has lower leakage current, higher dielectric constant, and better interfacial characteristic. The dielectric constant of MFOS capacitor remarkable larger than MFS capacitor when the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer thickness thinner than 300 nm. In addition, the leakage current increase seriously at 20 V gate bias voltage. We propose the mechanism to describe this phenomenon which is caused by the oxygen vacancies between P(VDF-TrFE) and SiO2 interface. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:13:04Z (GMT). No. of bitstreams: 1 ntu-108-R06943105-1.pdf: 3569268 bytes, checksum: 89289bbe69638d26b81a64085159f779 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要..................................................I
Abstract.................................................II Contents.................................................IV Table Captions...........................................VI Figure Captions.........................................VII Chapter 1 Introduction..................................1 1-1 Motivation............................................1 1-2 Ferroelectric Materials...............................4 1-3 Electrical Characteristics of MIS Device Structure....5 1-4 Extrinsic Frequency Dispersion in C-V Measurements...10 1-4-1 Series Resistance Effect...........................10 1-4-2 Interfacial Layer Effect...........................12 1-5 Intrinsic Frequency Dispersion in C-V Measurements...14 1-6 Interface Trap Density Calculation...................16 Chapter 2 Investigation of Electrical Characteristic in P(VDF0.75-TrFE0.25) Organic Ferroelectric Capacitor......20 2-1 Introduction.........................................20 2-2 Experimental.........................................21 2-3 Results and Discussion...............................23 2-3-1 The I-V and C-V Measurement Result.................23 2-3-2 Extrinsic and Intrinsic Frequency Dispersion in C-V Measurements.............................................29 2-3-3 Interface Trap Density Calculation.................34 2-4 Summary..............................................37 Chapter 3 A low-k Interfacial Layer Induced by Interface Trap Charge for P(VDF0.75-TrFE0.25) in Metal- Organic Ferroelectric-Semiconductor (MFS) Device.................39 3-1 Introduction.........................................39 3-2 Experimental.........................................42 3-3 Results and Discussion...............................43 3-4 Summary..............................................53 Chapter 4 Investigation of Interface Characteristic for P(VDF0.75-TrFE0.25) in Metal-Organic Ferroelectric-SiO2-Semiconductor (MFOS) Device..............................55 4-1 Introduction.........................................55 4-2 Experimental.........................................56 4-3 Results and Discussion...............................57 4-4 Summary..............................................64 Chapter 5 Conclusion and Future work...................65 5-1 Conclusion...........................................65 5-2 Future work..........................................66 References...............................................67 Appendix 1...............................................72 Appendix 2...............................................73 | |
| dc.language.iso | en | |
| dc.subject | 鐵電材料 | zh_TW |
| dc.subject | 壓電材料 | zh_TW |
| dc.subject | 高介電值 | zh_TW |
| dc.subject | P(VDF-TrFE) | zh_TW |
| dc.subject | dielectric | en |
| dc.subject | P(VDF-TrFE) | en |
| dc.subject | high-k | en |
| dc.subject | ferroelectric | en |
| dc.subject | piezoelectric | en |
| dc.title | 有機鐵電材料 P(VDF-TrFE) 介電特性於異質接面性質之探討 | zh_TW |
| dc.title | The study of dielectric characterization of P(VDF0.75-TrFE0.25) on the Si/SiO2 surface | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡振國(Jenn-Gwo Hwu),謝宗霖(Jay Shieh),陳柏翰(Po-han Chen) | |
| dc.subject.keyword | P(VDF-TrFE),高介電值,鐵電材料,壓電材料, | zh_TW |
| dc.subject.keyword | P(VDF-TrFE),dielectric,high-k,ferroelectric,piezoelectric, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU201903617 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| Appears in Collections: | 電子工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-108-1.pdf Restricted Access | 3.49 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
