Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73874
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor閔明源(Ming-Yuan Min)
dc.contributor.authorYu-Shan Kuoen
dc.contributor.author郭育姍zh_TW
dc.date.accessioned2021-06-17T08:12:30Z-
dc.date.available2019-08-18
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citationAston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T., & Shipley, M. T. (1986). The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science, 234(4777), 734-737.
Aston-Jones, G., Rajkowski J, Cohen J. (1999) ' Role of locus coeruleus in attention and behavioral flexibility ' Biological Psychiatry 46(9):1309-1320
Aston-Jones, G., Zhu, Y., & Card, J. P. (2004). Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool. Journal of Neuroscience, 24(9), 2313-2321.
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403-450.
Aston-Jones G, Waterhouse B (2016) Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res 1465:75-78.
Bissonette G.B., Martins G.J., Franz T.M., Harper E.S., Schoenbaum G., Powell E.M. (2008) 'Double Dissociation of the Effects of Medial and Orbital Prefrontal Cortical Lesions on Attentional and Affective Shifts in Mice' Journal of Neuroscience 28 (44) 11124-11130
Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., . . . De Lecea, L. (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature neuroscience, 13(12), 1526.
Du, K., Wu, Y.-W., Lindroos, R., Liu, Y., Rózsa, B., Katona, G., . . . Kotaleski, J. H. (2017). Cell-type–specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proceedings of the National Academy of Sciences, 114(36), E7612-E7621.
Hillman K. L., Bilkey D. K. (2010) ' Neurons in the Rat Anterior Cingulate Cortex Dynamically Encode Cost–Benefit in a Spatial Decision-Making Task ' Journal of Neuroscience 30 (22) 7705-7713.
Izquierdo A., Suda R. K., Murray E.A., (1999). 'Choosing between Small, Likely Rewards and Large, Unlikely Rewards Activates Inferior and Orbital Prefrontal Cortex.' Journal of Neuroscience, 19 (20) 9029-9038.
Izquierdo A., Suda R. K., Murray E.A. (2004) 'Bilateral Orbital Prefrontal Cortex Lesions in Rhesus Monkeys Disrupt Choices Guided by Both Reward Value and Reward Contingency.' Journal of Neuroscience 24 (34) 7540-7548.
Jodo E, Chiang C, Aston-Jones G. (1998) ' Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons.' Journal of Neuroscience 83(1):63-79.
Kayama Y, Ohta M, Jodo E. (1992) Firing of ‘possibly’ cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Research 569 (2) 210-220.
McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR. (2015) ' CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety ' Neuron 87(3):605-20.
Devanna P, Middelbeek J, Vernes S.C. (2014) ' FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways ' Front Cell Neurosci.; 8: 305.
McBain C.J., Fisahn A. (2001) ' Interneurons unbound ', Nature Reviews Neuroscience 2: 11–23
Moreira P.S., Marques P, Magalhães R (2016) ' Identifying Functional Subdivisions in the Medial Frontal Cortex ' Journal of Neuroscience 36(44):11168-11170
Schwarz L.A., Miyamichi K., Gao X.J., Beier T.K., Weissbourd B., DeLoach E.K., Ren J., Ibanes S., Malenka R.C., Kremer E.J., Luo L. (2015) ' Viral-genetic tracing of the input–output organization of a central noradrenaline circuit ' Nature 524: 88–92
Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) 'Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse'. J of comparative neurology 467:60–7.
Takeuchi, T., Duszkiewicz, A. J., Sonneborn, A., Spooner, P. A., Yamasaki, M., Watanabe, M., Greene, R. W. (2016). 'Locus coeruleus and dopaminergic consolidation of everyday memory.' Nature, 537(7620), 357.
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999). 'The role of locus coeruleus in the regulation of cognitive performance.' Science, 283(5401), 549-554.
Verstegen AMJ, Vanderhorst V, Gray PA, Zeidel ML, Geerling JC (2017) Barrington's nucleus: Neuroanatomic landscape of the mouse 'pontine micturition center'. J Comp Neurol 525:2287-2309.
Walton M. E., Bannerman D. M., Alterescu K., Rushworth M. F. S. (2003) ' Functional Specialization within Medial Frontal Cortex of the Anterior Cingulate for Evaluating Effort-Related Decisions ' Journal of Neuroscience 23 (16) 6475-6479.
Yoshihara Y, Mizuno T, Nakahira M, Kawasaki M, Watanabe Y, Kagamiyama H, Jishage K, Ueda O, Suzuki H, Tabuchi K, Sawamoto K, Okano H, Noda T, Mori K. (1999) A genetic approach to visualization neurotechnique of multisynaptic neural pathways using plant lectin transgene. Neuron 22:33-41.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73874-
dc.description.abstract在這份研究中我們試圖探討中間神經元 (interneurons, IN) 是否會整合來自大腦皮質送往位在藍斑核(locus coeruleus, LC)去甲基正腎上腺素(norepinephrinergic, NE)神經細胞的資訊。在形態研究上,LC-NE神經細胞會對大腦發送全面性的投射,並作為中樞神經系統主要的NE提供者。在行為研究上,LC-NE系統能夠促進整體細胞活性(反應度、警覺度),參與睡眠-清醒週期(sleep-wake cycle)的轉換,和與任務相關表現的提升有關。近期研究指出LC-NE系統能夠作為暫時性的過濾器,允許跟任務相關的訊息能通過感官門控(sensory gating),進而促進行為本身,並與擁有高度認知大腦皮質所判定結果協調一致。LC神經細胞的'phasic activity'與神經網絡的增益值(gain)有高度關聯性,我們猜想phasic activity可能受到LC附近的INs調控,或是受到來自大腦皮質,如腦前額葉(prefrontal cortex, PFC)上而下的神經調節。位在PFC的腦區在評估獎賞的機制上扮演重要功能,並且這些功能與LC-NE系統的功能有高度的重疊。先前在猴子與大鼠的研究已經指出,PFC對LC的投射主要發生在核邊樹突區域(peri-cerulear dendritic zone, peri-LC),該區域密布著LC樹突的投射。由於大部分的INs也位在peri-LC,我們猜想是否這些INs會接收PFC的投射,作為PFC和LC之間整合器。為了回答這問題,我們製作了cre酵素依賴的病毒 (AAV2-DIO-WGA),該病毒同時擁有橫跨神經細胞突觸(trans-neuronal)的能力,藉此來揭露與LC有突觸連結的INs。我們也決定先將焦點放在研究抑制性中間神經元(inhibitory interneurons, I-IN)上面,因為在INs的群體中同時也存在著興奮性神經元(excitatory interneurons, E-IN)。AAV2-DIO-WGA被打入兩種基因型老鼠的後代,第一種老鼠為TH-cre會表現cre酵素在兒茶酚胺神經細胞(catecholaminergic neurons)中,第二種老鼠為GAD-GFP會表現綠螢光蛋白於γ-氨基丁酸神經細胞(GABAergic neurons)中,這份組合使後代能夠進行位在橋腦背側LC細胞專一性的感染,並且使目標I-INs能夠發出自體螢光。透過免疫染色,我們如預期在LC細胞上觀察到了TH和WGA的免疫活性,並在非LC細胞(沒有TH免疫活性)上觀察到了WGA的免疫活性。由於此cre酵素在兒茶酚胺神經細胞以外的細胞表現量極低,擁有很高的專一性感染可信度,我們認為這些沒有TH免疫活性、卻有WGA活性的神經細胞正是橫跨神經突觸標定到的INs,這些INs與LC細胞具有功能性連結。這些INs被發現大量聚集於LC樹突周邊的內側區域,約10.33 ± 0.12% (n=2)的INs有GFP被認定為I-INs,約22.89 ± 2.26% (n=1)的INs擁有FoxP2 轉錄因子的活性。為了證實是否這些INs接收來自大腦皮質的投射,我們重複了以上實驗並搭配了新的病毒 (AAV9-Syn-ChrimsonR-tdT),注射於PFC以進行順行的追蹤。我們發現PFC的投射與LC和INs都有接觸。總之,這些結果支持了我們的論點,位在LC周邊樹突區域內側的E-INs和I-INs位與LC神經細胞有具功能性的連結,並且這群INs會接收、整合來自PFC送給LC神經細胞的訊息。zh_TW
dc.description.abstractIn this study, we aim to test whether interneurons (IN) could integrate cortical signals to norepinephrinergic (NE) neurons in locus coeruleus (LC). In morphology, LC-NE neurons sends out global axonal projections and provide major NE supply to the central nervous system. In behavior, the LC-NE system promotes general cellular activity (responsiveness, vigilance) in the brain, participating in shift of sleep-wake cycle, and relates to improvement of task-related performance. Recent studies have suggested that LC-NE system serves as a temporary filter, allowing task-related signals passing through sensory gating to facilitate behavior, in alignment of decision made by cortical areas of high cognitive function. Phasic activity of LC is highly correlated to increasing gain of neuronal network, which we suggest that it might be regulated by INs in local circuit and top-down innervating signals from cortical areas like the prefrontal cortex (PFC). Brain regions in PFC play significant roles in evaluating rewards and their functions are overlapping with those attributed to the LC-NE system. Previous studies in monkeys and rats have shown that PFC projection to LC terminates at peri-cerulear dendritic zone (peri-LC), where dendrites of LC-NE neurons are located. Since most local INs are also located in this peri-LC region, we wondered if INs received concomitant top-dwon innervations from the PFC, serving as integrators of cortical signals before passing them to LC. To answer this question, we produced a cre-dependent virus, AAV2-DIO-WGA, with trans-neuronal capacity to reveal INs synaptically connecting with LC neurons. And we decided firstly to focus on inhibitory interneurons (I-IN), besides from excitatory interneurons (E-INs). AAV2-DIO-WGA was injected into offspring of TH-cre mouse (expressing cre enzyme in catecholaminergic neurons) crossed with GAD-GFP mouse (expressing green fluorescence protein in GABAergic neurons), this allows cell-specific infection in LC neurons in dorsal pons and provides intrinsic GFP label on I-INs. Using immunohistochemistry (IHC) staining, we observed TH- and WGA- immuno-reactive (ir) within LC as expected, but also abundant neurons, which are WGA-ir but not TH-ir, in peri-LC. With high confidence of low leakage rate of cre expression in cells other than catecholaminergic population, we reason these WGA-ir and TH-negative neurons are trans-synaptically labelled and connected with LC neurons. These INs were located predominantly in the medial aspect of peri-LC region, about 10.33 ± 0.12% (n=2) of INs are found labelled with GFP being I-INs, and about 22.89 ± 2.26% (n=1) of INs with FoxP2 transcriptional factor. To confirm whether these INs receive top-down cortical inputs, we repeated experiments described above with an additional injection of AAV carrying reading frame of Crimson, AAV9-Syn-ChrimsonR-tdT, into the PFC for anterograde tracing. We found that the PFC fibers made contact with both LC neurons and INs. Together, these results support our arguments that there are local excitatory and inhibitory INs in medial peri-LC forming functional connections with LC-NA neurons and integrating the PFC inputs onto LC neurons.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:12:30Z (GMT). No. of bitstreams: 1
ntu-108-R06b21002-1.pdf: 9168849 bytes, checksum: 43d06d7e12850ff17f13c1e68e141931 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 1
Acknowledgement | 2
中文摘要 | 3
Abstract | 5
Content | 7
Introduction | 10
Materials and Methods | 14
2.1 Animals 14
2.2 Viral tracing experiments 14
2.3 Brain section preparation 16
2.4 Immunohistochemistry 17
2.5 Imaging and processing 18
Results | 19
3.1 Confirming the existence of PFC top-down projections to LC region in mouse species. 19
3.2 Ventral OFC and mPFC projects to medial peri-LC region. 19
3.3 Progressive changes in PFC fiber quantities in LC region by shifting PFC injection sites from lateral OFC to mPFC. 20
3.4 Using trans-neuronal tracer AAV-DIO-WGA to reveal INs synaptically connecting with LC-NE neurons 21
3.5 PFC top down direct and indirect innervation onto INs in local circuit and LC-NE neurons. 22
3.6 Considerable proportion of INs are co-localized with FoxP2 transcription factor staining. 23
Discussion | 25
4.1 Varied organization of PFC top-down projections among different species. 25
4.2 Challenges in narrowing down ranges of injection sites. 25
4.3 Issues emerged from using AAV-DIO-WGA as trans-neuronal tracer. 26
4.4 Confocal microscopy images may not be able to provide sufficient evidence for cell contact. 27
4.5 Limitation of IHC application: Why did TH staining appear bad? And why can’t we study GAD-ir neuron and FoxP2-ir neurons at the same time? 28
4.6 Concluding remarks for this research. 29
Summary | 31
Reference | 32
Figures | 35
Figure 1. Confirming the existence of prefrontal cortex top-down projections to locus coeruleus region in mice. 36
Figure 2. Further research in projections patterns from different brain areas in prefrontal cortex to locus coeruleus region. 39
Figure 3. Prefrontal cortex injection site mapping and validification. 41
Figure 4. Progressive increment in fibers from prefrontal cortex in medial dendritic zones of locus coeruleus by shifting injection sites from lateral orbital frontal cortex to medial orbital frontal cortex. 43
Figure 5. Shifting injection sites from lateral orbital frontal cortex to medial frontal cortex resulting more top-down inputs to medial peri-LC regions. 46
Figure 6. Revealing local interneurons synaptically connected with locus coeruleus neurons with trans-neuronal tracer. 48
Figure 7. Trans-neuronal outcome of AAV2-DIO-WGA in different segment of locus coeruleus and distribution of local interneurons. 50
Figure 8. Control stains of AAV2-DIO-WGA & Correlation between survival time and WGA signal. 52
Figure 9. Peri-cerulear dendritic zone of locus coeruleus and trans-neuronal events. 55
Figure 10. Prefrontal cortex top-down direct and indirect innervation onto interneurons in local circuit and locus coeruleus neurons. 57
Figure 11. Prefrontal cortex fiber organization in locus coeruleus from rostral to caudal sections. 59
Figure 12. Prefrontal cortex contact verification and demonstration of local interneurons in diverse forms. 62
Figure 13. Considerable proportion of local interneurons synaptically connected with locus coeruleus neurons are co-localized with FoxP2 transcription factor staining. 64
Table | 65
Diagram 1. Schematic diagram illustrating overall concepts of prefrontal cortex top-down innervation onto LC. 65
Table 1. Immunostaining details and sources. 66
Appendix | 67
Abbreviation. 67
dc.language.isoen
dc.title鼠腦前額葉皮質對具功能性連結之中間神經元和藍斑核上而下之伴隨調控zh_TW
dc.titleConcomitant Top-down Innervations from the Prefrontal Cortex onto Synaptically Connecting Interneurons and Norepinephrine Neuronsin Locus Coeruleus in Miceen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor陳瑞芬(Ruei-Feng Chen)
dc.contributor.oralexamcommittee楊琇雯(Hsiu-Wen Yang),陳志成(Chih-Cheng Chen),姚皓傑(Hau-Jie Yau)
dc.subject.keyword適應性增益值理論,LC-NE系統,當地迴路,內側前額葉皮質,眼眶額葉皮質,小麥胚芽凝集素,zh_TW
dc.subject.keywordAdaptive gain theory,LC-NE system,local circuit,medial prefrontal cortex,orbital frontal cortex,wheat germ agglutinin,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201903375
dc.rights.note有償授權
dc.date.accepted2019-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
8.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved