Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73862
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡永傑(Wing-Kit Choi)
dc.contributor.authorChih-Wei Hsuen
dc.contributor.author許智崴zh_TW
dc.date.accessioned2021-06-17T08:12:10Z-
dc.date.available2024-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citation[1]Robert H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology, John Wiley & Sons, Inc.,2011
[2]Eugene Hecht, Optics (4th edition), pp336-337, Pearson Education, Inc.,2002
[3]I. Abdulhalim, Dispersion Relations for the Refractive Indices and the Effective Birefringence of Liquid Crystals, Molecular Crystals and Liquid Crystals, 197:1, pp103-108,1991
[4]Eugene Hecht, Optics, p371, Pearson Education, Inc., 2002
[5]M.S.Zakerhamidia, M.H. MajlesArab, A.Maleki, Dielectric anisotropy, refractive indices and order parameter of W-1680 nematic liquid crystal, Journal of Molecular Liquids, Volume 181 , pp 77-81, May 2013
[6]A. Sengupta, Topological Microfluidics, p 14, Springer Theses, 2013
[7]Xiangyi Nie, Haiqing Xianyu, Ruibo Lu, Thomas X. Wu, and Shin-Tson Wu, Pretilt Angle Effects on Liquid Crystal Response Time, J. Display Technol. 3, 280-283 (2007)
[8]Shoichi Ishihara, How Far Has the Molecular Alignment of Liquid Crystals Been Elucidated ?, J. Display Technol. 1, 30- (2005)
[9]Tien-Lun Ting, Cho-Yan Chen, Sau-Wen Tsao, Mei-Ju Lu, Yen-Ying Kung, Wen-Hao Hsu, and Jenn-Jia Su, Vertically Aligned In-Plane-Switching LCD Mode With Novel Pixel Circuits, J. Display Technol. 9, 832-839 (2013)
[10]Zhibing Ge, Xinyu Zhu, Thomas X. Wu, Shin-Tson Wu, High Transmittance In-Plane Switching Liquid Crystal Displays, J. Display Technol. 2, 114-120 (2006)
[11]W.K. Choi, Wu, S.T. Wu, Fast Response Liquid Crystal Mode, U.S. Patent No. 7369204
[12]Jiao, Meizi, et al, Submillisecond response nematic liquid crystal modulators using dual fringe field switching in vertically aligned cell, Applied Physics Letters 92.11:111101. (2018)
[13]Meizi Jiao, Shin-Tson Wu, and Wing-Kit Choi, Fast-Response Single Cell Gap Transflective Liquid Crystal Displays, J. Display Technol. 5, 83-85 (2009)
[14]Tae-Hoon Choi, Jae-Hyeon Woo, Yeongyu Choi, and Tae-Hoon Yoon, Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field, Opt. Express 24, 20993-21000 (2016)
[15]Tae-Hoon Choi, Yeongyu Choi, Jae-Hyeon Woo, Seung-Won Oh, and Tae-Hoon Yoon, Electro-optical characteristics of an in-plane-switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure, Opt. Express 24, 15987-15996 (2016)
[16]Choi, Wing-Kit & Tung, Chia-Hsiang & Bo-Kai Tseng, Fast-Response VA-FFS Liquid Crystal Mode using 3D Electrode Design. SID Symposium Digest of Technical Papers. 48. 1838-1840. 10.1002 (2017)
[17]FangWang Gou,HaiWei Chen, Ming-Chun Li, Seok-Lyul Lee, & Shin-Tson Wu, Submillisecond-Response Liquid Crystal for High-Resolution Virtual Reality Displays, Opt. Express 25, 7984-7997 (2017)
[18]H. Y. Kim, S. H. Nam, and S. H. Lee, Dynamic Stability of the Fringe-Field Switching Liquid Crystal Cell Depending on Dielectric Anisotropy of a Liquid Crystal, Jpn. J. Appl. Phys. 42, 2752–2755 (2003)
[19]S. H. Jung, H. Y. Kim, M.-H. Lee, J. M. Rhee, and S. H. Lee, Cell Gap‐Dependent Transmission Characteristics of a Fringe‐Electric Field‐Driven Homogeneously Aligned Liquid Crystal Cell, for a Liquid Crystal With Negative Dielectric Anisotropy, Liq. Cryst. 32, 267–275 (2007)
[20]Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, Fringe-Field Switching with a Negative Dielectric Anisotropy Liquid Crystal, J. Display Technol. 9, 74–77 (2013)
[21]TaeYong Jung, DaeLim Park, Ji-Sub Park, Joun-Ho Lee, Sungho Kim, Byeong Koo Kim, Hak-Rin Kim, Pixel Design Optimization of Fringe-Field Switching Mode for Applying Negative Liquid Crystals in High-Resolution Mobile Displays, J. Display Technol. 11, 229-235 (2015)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73862-
dc.description.abstract響應時間快速對液晶顯示器非常重要,因為可以避免動態影像模糊。垂直配像邊緣場效驅動(VA-FFS)就具有快速響應時間的特性,以這項技術為基礎,我們繼續研究其他可能影響反應時間的因素。本篇論文討論了轉動機制和響應時間的關聯。結果顯示負型液晶的響應時間比正型液晶慢,這是因為液晶分子在垂直電場中的特殊行為與較低的虛擬牆密度所致。我們稱此負型液晶之特殊行為「兩階段過程」,以其轉動會先從一些區域開始,之後才帶動其他區域轉動的特性得名。根本原因是沒有明確轉動方向的「猶豫液晶」會等待其他有明確方向的液晶引導它們。負型液晶在VA-FFS中優勢,即是更高的穿透度,但也意謂更少的虛擬牆可以被用來加快回復時間。
本篇研究也探討二維與三維電極間的比較。我們發現三維電極可以限制液晶分子的轉動方向,進而縮短上升(啟動)時間。換句話說,三維電極有更少的「猶豫液晶」。這在負型液晶上尤其明顯。另一個使用負型液晶的三維電極比較快的原因是:在二維電極中,所有負型液晶皆可以完全轉動,也就延長了整體的上升時間。但在三維電極中,部分負型液晶不能完全轉動,因為均勻的電場限制它們的轉動。
最終,我們發現使用正型液晶的三維電極在快速反應時間上極具潛力,但它的穿透度遠低於使用負型液晶的同型元件。因此,我們採用三種方法改善它的穿透度: 雙面FFS、FFS、突起物。最終,我們將其穿透度提升10-15%。
zh_TW
dc.description.abstractFast response time is significant for LCD because it can avoid unwanted motion blur. Based on VA-FFS (vertically-aligned fringe field switching ) mode, which features fast response time, we continue to study other factors that can affect response time. The relation of switching mechanism and response time in VA-FFS mode has been studied in this thesis. The result shows that negative LC is slower than positive LC in VA-FFS mode, due to its special molecule behavior in vertical fields and the lower density of virtual walls in the LC cell. We name this molecule behavior of negative LC as the “two-step process”, owing to the feature that negative LC will begin the rotation in some regions, and then the others. The root cause is that “hesitant LC molecules” without clear falling direction would be waiting for those with determined directions to guide them. Negative LC still has an advantage in VA-FFS mode, which is higher transmittance, although it means less disclinations that can be used as virtual wall for faster fall time.
The comparison between 2D and 3D electrodes has also been discussed. We find that 3D electrode can restrict the rotating directions of LC molecules to achieve faster rise time. In other words, there are less “hesitant LC”. This is especially obvious for negative LC. Another reason why 3D electrode using negative LC is faster is that in 2D pattern, all negative LC molecules are allowed to fully rotate, which extends the overall rise time. However, in 3D pattern, parts of the negative LC molecules could not fully rotate due to equal distribution of electric fields in all directions.
Finally, we find that positive LC in 3D electrode is most competitive for fast response time device, but it has much lower transmittance than negative LC does. Therefore, we use three methods to improve its transmittance: DFFS, DFFS with 3-level electrode design, and protrusion. Eventually, we can improve transmittance by 10-15%.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:12:10Z (GMT). No. of bitstreams: 1
ntu-108-R05941098-1.pdf: 7088516 bytes, checksum: d61943d0ef3ee496e4cbfa7232712403 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
中文摘要 iii
ABSTRACT iv
Content vi
Figure viii
Table xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Introduction of Liquid Crystals 1
1.2.1 Nematic Liquid Crystal 1
1.2.2 Birefringence and Phase Retardation 2
1.2.3 Dielectric anisotropy ( ∆ε ) 4
1.2.4 Elastic Constants 5
1.2.5 Response Time 5
1.3 Introduction of Liquid Crystal Display ( LCD ) 6
1.3.1 Structure of Liquid Crystal Display 6
1.3.2 Mechanism of Liquid Crystal Display 7
1.3.3 Alignment of Liquid Crystal Molecules 8
1.4 The Development of Display Technology 9
1.4.1 In- Plane Switching ( IPS ) 9
1.4.2 Fringe Field Switching ( FFS ) 10
Chapter 2 Review & Research Objectives 11
Chapter 3 Simulation Methods 14
3.1 Introduction of TechWiz 3D LCD 14
3.2 Materials 15
3.3 Mesh Generation 16
3.4 Rubbing 16
3.5 Optics 19
3.6 Response Time 20
Chapter 4 Results & Discussions 22
4.1 Negative and Positive LC behavior in VA-FFS 22
4.2 Comparison of Negative and Positive LC in 2D pattern 24
4.3 Comparison of Negative & Positive LC in 3D pattern 37
4.4 Comparison of 2D & 3D Pattern using Negative LC 44
4.5 Comparison of 2D & 3D Pattern using Positive LC 50
4.6 Viewing angle 56
4.7 Improvement for Positive 3D VA-FFS 58
4.7.1 DFFS 58
4.7.2 3 Level Electrode Design 60
4.7.3 Protrusion 67
Chapter 5 Conclusion 75
Reference 77
Appendix 80
A.1 Transflective Display 80
A.1 Hybrid ( 2D + 3D) TR Display 82
A.2 3D TR Display 84
dc.language.isoen
dc.subject三維電極結構zh_TW
dc.subject垂直配向邊緣場效驅動zh_TW
dc.subject轉動機制zh_TW
dc.subject快速響應時間zh_TW
dc.subject虛擬牆zh_TW
dc.subjectfast response timeen
dc.subjectthree-dimensional electrodeen
dc.subjectvertically aligned fringe field switchingen
dc.subjectswitching mechanismen
dc.subjectvirtual wallsen
dc.title垂直配向邊緣場效驅動液晶技術應用於顯示器元件之研究zh_TW
dc.titleVertically-Aligned Fringe Field Switching Liquid Crystal Mode for Device Applicationsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃定洧(Ding-Wei Huang),林晃巖(Hoang-Yan Lin)
dc.subject.keyword快速響應時間,三維電極結構,垂直配向邊緣場效驅動,轉動機制,虛擬牆,zh_TW
dc.subject.keywordfast response time,three-dimensional electrode,vertically aligned fringe field switching,switching mechanism,virtual walls,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201903690
dc.rights.note有償授權
dc.date.accepted2019-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved