請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73848完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊昀叡(Ray Y. Chuang) | |
| dc.contributor.author | Chia-Ying Liu | en |
| dc.contributor.author | 劉嘉頴 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:11:48Z | - |
| dc.date.available | 2019-08-19 | |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | Aguera-Vega, F., Carvajal-Ramirez, F., and Martinez-Carricondo, P., 2017, Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle: Measurement, v. 98, p. 221-227.
Al-Rawabdeh, A., Moussa, A., Foroutan, M., El-Sheimy, N., and Habib, A., 2017, Time series UAV image-based point clouds for landslide progression evaluation applications: Sensors, v. 17, no. 10, p. 22. Ali-Zade, A., A., Shnyukov, E. F., Grigoryants, B. V., Aliyev, A. A., Rakhmanov, and R., R., 1984a, Geotectonic conditions of mud volcano manifestation in the world and their role in the prediction of gas and oil content in the earth’s interior: Proceedings of 27th International Geological Congress v. 13, p. 377-393. Ali-Zade, A., Shnyokov, E., Grigorianz, B., Aliev, A., and Rahmanov, R., 1984b, Geotectonic conditions of mud volcano manifestation on the Earth and their significance for oil and gas prospects: Proc. 27th World Geol. Congr. C, v. 13, p. 166-172. Anderson, K., and Gaston, K. J., 2013, Lightweight unmanned aerial vehicles will revolutionize spatial ecology: Frontiers in Ecology and the Environment, v. 11, no. 3, p. 138-146. Bonini, M., 2009, Mud volcano eruptions and earthquakes in the Northern Apennines and Sicily, Italy: Tectonophysics, v. 474, no. 3-4, p. 723-735. Bonini, M., Rudolph, M. L., and Manga, M., 2016, Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes: Tectonophysics, v. 672, p. 190-211. Brown, D. C., Decentering distortion of lenses1966. Brown, D. C., 1971, CLOSE-RANGE CAMERA CALIBRATION: Photogrammetric Engineering, v. 37, no. 8, p. 855-&. Brown, K., and Westbrook, G. K., 1988, Mud diapirism and subcretion in the Barbados ridge accretionary complex - the role of fluids in accretionary processes: Tectonics, v. 7, no. 3, p. 613-640. Brown, K. M., 1990, The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems: Journal of Geophysical Research-Solid Earth and Planets, v. 95, no. B6, p. 8969-8982. Cardil, A., Vepakomma, U., and Brotons, L., 2017, Assessing pine processionary moth defoliation using unmanned aerial systems: Forests, v. 8, no. 10, p. 13. Chang, C. P., Chang, T. Y., Angelier, J., Kao, H., Lee, J. C., and Yu, S. B., 2003, Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data: Earth and Planetary Science Letters, v. 214, no. 1-2, p. 115-127. Chang, P. Y., Chang, S. K., Liu, H. C., and Wang, S. C., 2011, Using Integrated 2D and 3D Resistivity Imaging Methods for Illustrating the Mud-Fluid Conduits of the Wushanting Mud Volcanoes in Southwestern Taiwan: Terrestrial Atmospheric and Oceanic Sciences, v. 22, no. 1, p. 1-14. Chang, P. Y., Yang, T. Y., Chyi, L. L., and Hong, W. L., 2010, Electrical Resistivity Variations Before and After the Pingtung Earthquake in the Wushanting Mud Volcano Area in Southwestern Taiwan: Journal of Environmental and Engineering Geophysics, v. 15, no. 4, p. 219-231. Chang, Y. H., Cheng, T. W., Lai, W. J., Tsai, W. Y., Sun, C. H., Lin, L. H., and Wang, P. L., 2012, Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan: Environmental Microbiology, v. 14, no. 4, p. 895-908. Chao, H. C., You, C. F., Liu, H. C., and Chung, C. H., 2013, The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions: Geochimica Et Cosmochimica Acta, v. 114, p. 29-51. Chao, H. C., You, C. F., Wang, B. S., Chung, C. H., and Huang, K. F., 2011, Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones: Earth and Planetary Science Letters, v. 305, no. 1-2, p. 32-44. Chen, N. C., Yang, T. F., Hong, W. L., Chen, H. W., Chen, H. C., Hu, C. Y., Huang, Y. C., Lin, S., Lin, L. H., Su, C. C., Liao, W. Z., Sun, C. H., Wang, P. L., Yang, T., Jiang, S. Y., Liu, C. S., Wang, Y. S., and Chung, S. H., 2017, Production, consumption, and migration of methane in accretionary prism of southwestern Taiwan: Geochemistry Geophysics Geosystems, v. 18, no. 8, p. 2970-2989. Chen, S. C., Hsu, S. K., Tsai, C. H., Ku, C. Y., Yeh, Y. C., and Wang, Y. S., 2010, Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan: Marine Geophysical Research, v. 31, no. 1-2, p. 133-147. Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., Liu, C. S., Lin, H. S., and Lee, Y. W., 2014, Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan: Journal of Asian Earth Sciences, v. 92, p. 201-214. Cheng, T. W., Chang, Y. H., Tang, S. L., Tseng, C. H., Chiang, P. W., Chang, K. T., Sun, C. H., Chen, Y. G., Kuo, H. C., Wang, C. H., Chu, P. H., Song, S. R., Wang, P. L., and Lin, L. H., 2012, Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano: Isme Journal, v. 6, no. 12, p. 2280-2290. Chigira, M., and Tanaka, K., 1997, Structural features and the history of mud volcanoes in southern Hokkaido, northern Japan: JOURNAL-GEOLOGICAL SOCIETY OF JAPAN, v. 103, p. 781-791. Chiu, J.-K., Wei-Hao, T., and Liu, C.-S., 2006, Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan: TAO: Terrestrial, Atmospheric and Oceanic Sciences, v. 17, no. 4, p. 703. Chuang, P. C., Yang, T. F., Hong, W. L., Lin, S., Sun, C. H., Lin, A. T. S., Chen, J. C., Wang, Y., and Chung, S. H., 2010, Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation: Geofluids, v. 10, no. 4, p. 497-510. Cimoli, E., Marcer, M., Vandecrux, B., Boggild, C. E., Williams, G., and Simonsen, S. B., 2017, Application of low-cost UASs and digital photogrammetry for high-resolution snow depth mapping in the Arctic: Remote Sensing, v. 9, no. 11, p. 29. Cuffaro, M., Billi, A., Bigi, S., Bosman, A., Caruso, C. G., Conti, A., Corbo, A., Costanza, A., D'Anna, G., Doglioni, C., Esestime, P., Fertitta, G., Gasperini, L., Italiano, F., Lazzaro, G., Ligi, M., Longo, M., Martorelli, E., Petracchini, L., Petricca, P., Polonia, A., and Sgroi, T., 2019, The Bortoluzzi Mud Volcano (Ionian Sea, Italy) and its potential for tracking the seismic cycle of active faults: Solid Earth, v. 10, no. 3, p. 741-763. Dadson, S. J., Hovius, N., Chen, H. G., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C., 2003, Links between erosion, runoff variability and seismicity in the Taiwan orogen: Nature, v. 426, no. 6967, p. 648-651. Davies, R. J., Brumm, M., Manga, M., Rubiandini, R., Swarbrick, R., and Tingay, M., 2008, The East Java mud volcano (2006 to present): An earthquake or drilling trigger?: Earth and Planetary Science Letters, v. 272, no. 3, p. 627-638. Deffontaines, B., Liu, C. S., and Hsu, H. H., 2016, Structure and deformation of the Southern Taiwan accretionary prism: The active submarine Fangliao Fault Zone offshore west Hengchun Peninsula: Tectonophysics, v. 692, p. 227-240. Derrien, A., Villeneuve, N., Peltier, A., and Beauducel, F., 2015, Retrieving 65 years of volcano summit deformation from multitemporal structure from motion: The case of Piton de la Fournaise (La Reunion Island): Geophysical Research Letters, v. 42, no. 17, p. 6959-6966. Dimitrov, L. I., 2002, Mud volcanoes—the most important pathway for degassing deeply buried sediments: Elsevier Science, p. 49-76. Doo, W. B., Hsu, S. K., Lo, C. L., Chen, S. C., Tsai, C. H., Lin, J. Y., Huang, Y. P., Huang, Y. S., Chiu, S. D., and Ma, Y. F., 2015, Gravity anomalies of the active mud diapirs off southwest Taiwan: Geophysical Journal International, v. 203, no. 3, p. 2089-2098. Fischer, D., Mogollon, J. M., Strasser, M., Pape, T., Bohrmann, G., Fekete, N., Spiess, V., and Kasten, S., 2013, Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage: Nature Geoscience, v. 6, no. 8, p. 647-651. Gomez, C., 2014, Digital photogrammetry and GIS-based analysis of the bio-geomorphological evolution of Sakurajima Volcano, diachronic analysis from 1947 to 2006: Journal of Volcanology and Geothermal Research, v. 280, p. 1-13. Gomez, C., Hayakawa, Y., and Obanawa, H., 2015, A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology: Geomorphology, v. 242, p. 11-20. Harwin, S., and Lucieer, A., 2012, Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery: Remote Sensing, v. 4, no. 6, p. 1573-1599. Hedberg, H. D., 1974, Relation of methane generation to undercompacted shales, shale diapirs, and mud volcanos: Aapg Bulletin-American Association of Petroleum Geologists, v. 58, no. 4, p. 661-673. Hiruta, A., Yang, T. F., Lin, S., Su, C. C., Chen, N. C., Chen, Y. J., Chen, H. W., Yang, T. H., Huang, Y. C., Wei, K. Y., Huang, J. J., Chen, S. C., and Song, S. R., 2017, Activation of gas bubble emissions indicated by the upward decreasing Lead-210 activity at a submarine mud volcano (TY1) offshore southwestern Taiwan: Journal of Asian Earth Sciences, v. 149, p. 160-171. Hovland, M., Hill, A., and Stokes, D., 1997, The structure and geomorphology of the Dashgil mud volcano, Azerbaijan: Geomorphology, v. 21, no. 1, p. 1-15. Hsieh, S., Geology and gravity anomalies of the Pingtung plain, Taiwan, in Proceedings Proc. Geol. Soc. China1970, Volume 13, p. 76-89. Hsu, H. H., Liu, C. S., Chang, Y. T., Chang, J. H., Ko, C. C., Chiu, S. D., and Chen, S. C., 2017, Diapiric activities and intraslope basin development offshore of SW Taiwan: A case study of the Lower Fangliao Basin gas hydrate prospect: Journal of Asian Earth Sciences, v. 149, p. 145-159. Hsu, H. H., Liu, C. S., Yu, H. S., Chang, J. H., and Chen, S. C., 2013, Sediment dispersal and accumulation in tectonic accommodation across the Gaoping Slope, offshore Southwestern Taiwan: Journal of Asian Earth Sciences, v. 69, p. 26-38. Huang, C. Y., Wu, W. Y., Chang, C. P., Tsao, S., Yuan, P. B., Lin, C. W., and Xia, K. Y., 1997, Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan: Tectonophysics, v. 281, no. 1-2, p. 31-51. Hui, G. G., Li, S. Z., Wang, P. C., Zhu, J. J., Guo, L. L., Wang, Q., and Somerville, I. D., 2018, Neotectonic implications and regional stress field constraints on mud volcanoes in offshore southwestern Taiwan: Marine Geology, v. 403, p. 109-122. Istadi, B. P., Pramono, G. H., Sumintadireja, P., and Alam, S., 2009, Modeling study of growth and potential geohazard for LUSI mud volcano: East Java, Indonesia: Marine and Petroleum Geology, v. 26, no. 9, p. 1724-1739. Ivanov, M. K., Limonov, A. F., and vanWeering, T. C. E., 1996, Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes: Marine Geology, v. 132, no. 1-4, p. 253-271. Jakubov, A. A., and Ali-Zade, A. A., 1971, Mud volcanoes of the Azerbaidjan SSR (Atlas): Academy of Sciences of the Azerbaidjan SSR. James, M. R., and Robson, S., 2012, Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application: Journal of Geophysical Research-Earth Surface, v. 117, p. 17. James, M. R., and Robson, S., 2014, Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery: Isprs Journal of Photogrammetry and Remote Sensing, v. 97, p. 160-170. James, M. R., Robson, S., d'Oleire-Oltmanns, S., and Niethammer, U., 2017, Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment: Geomorphology, v. 280, p. 51-66. Jiang, G. J., Angelier, J., Lee, J. C., Chu, H. T., Hu, J. C., and Mu, C. H., 2011, Faulting and Mud Volcano Eruptions Inside of the Coastal Range During the 2003 M-w=6.8 Chengkung Earthquake in Eastern Taiwan: Terrestrial Atmospheric and Oceanic Sciences, v. 22, no. 5, p. 463-473. Kassi, A. M., Khan, S. D., Bayraktar, H., and Kasi, A. K., 2014, Newly discovered mud volcanoes in the Coastal Belt of Makran, Pakistan-tectonic implications: Arabian Journal of Geosciences, v. 7, no. 11, p. 4899-4909. Kokh, S. N., Sokol, E. V., Dekterev, A. A., Kokh, K. A., Rashidov, T. M., Tomilenko, A. A., Bul'bak, T. A., Khasaeva, A., and Guseinov, A., 2017, The 2011 strong fire eruption of Shikhzarli mud volcano, Azerbaijan: a case study with implications for methane flux estimation: Environmental Earth Sciences, v. 76, no. 20, p. 20. Kopf, and Achim, J., 2008, Volcanoes: making calderas from mud: Nature Geoscience, v. 1, no. 8, p. 500-501. Kopf, A., and Deyhle, A., 2002, Back to the roots: boron geochemistry of mud volcanoes and its implications for mobilization depth and global B cycling: Chemical Geology, v. 192, no. 3-4, p. 195-210. Kopf, A., Robertson, A. H. F., Clennell, M. B., and Flecker, R., 1998, Mechanisms of mud extrusion on the Mediterranean Ridge Accretionary Complex: Geo-Marine Letters, v. 18, no. 2, p. 97-114. Kopf, A. J., 2002, Significance of mud volcanism: Reviews of Geophysics. Kopf, A. J., 2003, Global methane emission through mud volcanoes and its past and present impact on the Earth's climate: International Journal of Earth Sciences, v. 92, no. 5, p. 806-816. Krastel, S., Spiess, V., Ivanov, M., Weinrebe, W., Bohrmann, G., Shashkin, P., and Heidersdorf, F., 2003, Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea: Geo-Marine Letters, v. 23, no. 3-4, p. 230-238. Lance, S., Henry, P., Le Pichon, X., Lallemant, S., Chamley, H., Rostek, F., Faugeres, J. C., Gonthier, E., and Olu, K., 1998, Submersible study of mud volcanoes seaward of the Barbados accretionary wedge: sedimentology, structure and rheology: Marine Geology, v. 145, no. 3-4, p. 255-292. Lin, A. T., Yao, B. C., Hsu, S. K., Liu, C. S., and Huang, C. Y., 2009, Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity: Tectonophysics, v. 479, no. 1-2, p. 28-42. Lin, C. C., Lin, A. T. S., Liu, C. S., Horng, C. S., Chen, G. Y., and Wang, Y. S., 2014, Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan: Marine Geophysical Research, v. 35, no. 1, p. 21-35. Liu, C. C., Maity, J. P., Jean, J. S., Li, Z. H., Kar, S., Sracek, O., Yang, H. J., Chen, C. Y., Reza, A., Bundschuh, J., and Lee, C. Y., 2013, The geochemical characteristics of the mud liquids in the Wushanting and Hsiaokunshui Mud Volcano region in southern Taiwan: Implications of humic substances for binding and, mobilization of arsenic: Journal of Geochemical Exploration, v. 128, p. 62-71. Liu, C. C., Maity, J. P., Jean, J. S., Reza, A., Li, Z. H., Nath, B., Lee, M. K., Lin, K. H., and Bhattacharya, P., 2012, Geochemical characteristics of the mud volcano fluids in southwestern Taiwan and their possible linkage to elevated arsenic concentration in Chianan plain groundwater: Environmental Earth Sciences, v. 66, no. 5, p. 1513-1523. Liu, C. C., Maity, J. P., Jean, J. S., Sracek, O., Kar, S., Li, Z. H., Bundschuh, J., Chen, C. Y., and Lu, H. Y., 2011, Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan: Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, v. 46, no. 11, p. 1218-1230. Liu, C. S., Huang, I. L., and Teng, L. S., 1997, Structural features off southwestern Taiwan: Marine Geology, v. 137, no. 3-4, p. 305-319. Liu, L. P., Ryu, B., Sun, Z. L., Wu, N. Y., Cao, H., Geng, W., Zhang, X. R., Jia, Y. G., Xu, C. L., Guo, L., and Wang, L. B., 2019, Monitoring and research on environmental impacts related to marine natural gas hydrates: Review and future perspective: Journal of Natural Gas Science and Engineering, v. 65, p. 82-107. Loher, M., Ceramicola, S., Wintersteller, P., Meinecke, G., Sahling, H., and Bohrmann, G., 2018, Mud volcanism in a canyon: morphodynamic evolution of the active Venere mud volcano and its interplay with Squillace Canyon, Central Mediterranean: Geochemistry Geophysics Geosystems, v. 19, no. 2, p. 356-378. Losekann, T., Knittel, K., Nadalig, T., Fuchs, B., Niemann, H., Boetius, A., and Amann, R., 2007, Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea: Applied and Environmental Microbiology, v. 73, no. 10, p. 3348-3362. Lowe, D. G., Object recognition from local scale-invariant features, in Proceedings iccv1999, Volume 99, p. 1150-1157. Lowe, D. G., 2004, Distinctive Image Features from Scale-Invariant Keypoints: International Journal of Computer Vision, v. 60, no. 2, p. 91-110. Lupi, M., Saenger, E. H., Fuchs, F., and Miller, S. A., 2014, Lusi mud eruption triggered by geometric focusing of seismic waves: Nature Geoscience, v. 7, no. 9, p. 687-688. Madonia, P., Grassa, F., Cangemi, M., and Musumeci, C., 2011, Geomorphological and geochemical characterization of the 11 August 2008 mud volcano eruption at S. Barbara village (Sicily, Italy) and its possible relationship with seismic activity: Natural Hazards and Earth System Sciences, v. 11, no. 5, p. 1545-1557. Malenovsky, Z., Lucieer, A., King, D. H., Turnbull, J. D., and Robinson, S. A., 2017, Unmanned aircraft system advances health mapping of fragile polar vegetation: Methods in Ecology and Evolution, v. 8, no. 12, p. 1842-1857. Manga, M., Brumm, M., and Rudolph, M. L., 2009, Earthquake triggering of mud volcanoes: Marine and Petroleum Geology, v. 26, no. 9, p. 1785-1798. Martinelli, G., and Dadomo, A., 2005, Mud volcano monitoring and seismic events, Mud Volcanoes, Geodynamics and Seismicity, Springer, p. 187-199. Mauri, G., Husein, A., Mazzini, A., Irawan, D., Sohrabi, R., Hadi, S., Prasetyo, H., and Miller, S. A., 2018, Insights on the structure of Lusi mud edifice from land gravity data: Marine and Petroleum Geology, v. 90, p. 104-115. Mazzini, A., and Etiope, G., 2017, Mud volcanism: an updated review: Earth-Science Reviews, v. 168, p. 81-112. Mazzini, A., Nermoen, A., Krotkiewski, M., Podladchikov, Y., Planke, S., and Svensen, H., 2009, Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. Implications for the Lusi mud volcano, Indonesia: Marine and Petroleum Geology, v. 26, no. 9, p. 1751-1765. Mazzini, A., Svensen, H., Akhmanov, G. G., Aloisi, G., Planke, S., Malthe-Sorenssen, A., and Istadi, B., 2007, Triggering and dynamic evolution of the LUSI mud volcano, Indonesia: Earth and Planetary Science Letters, v. 261, no. 3-4, p. 375-388. Mellors, R., Kilb, D., Aliyev, A., Gasanov, A., and Yetirmishli, G., 2007, Correlations between earthquakes and large mud volcano eruptions: Journal of Geophysical Research-Solid Earth, v. 112, no. B4, p. 11. Milkov, A. V., 2000, Worldwide distribution of submarine mud volcanoes and associated gas hydrates: Marine Geology, v. 167, no. 1-2, p. 29-42. Mlambo, R., Woodhouse, I. H., Gerard, F., and Anderson, K., 2017, Structure from motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries: Forests, v. 8, no. 3, p. 20. Mozas-Calvache, A. T., Perez-Garcia, J. L., and Fernandez-del Castillo, T., 2017, Monitoring of landslide displacements using UAS and control methods based on lines: Landslides, v. 14, no. 6, p. 2115-2128. Niemann, H., Losekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schluter, M., Klages, M., Foucher, J. P., and Boetius, A., 2006, Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink: Nature, v. 443, no. 7113, p. 854-858. Niethammer, U., 2011, Open source image-processing tools for low-cost UAV-based landslide investigations: International archives of photogrammetry and remote sensing, v. 38, no. 1, p. C22. Olu, K., Lance, S., Sibuet, M., Henry, P., FialaMedioni, A., and Dinet, A., 1997, Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism: Deep-Sea Research Part I-Oceanographic Research Papers, v. 44, no. 5, p. 811-&. Pecher, I. A., 2002, Oceanography - Gas hydrates on the brink: Nature, v. 420, no. 6916, p. 622-623. Perez-Belzuz, F., Alonso, B., and Ercilla, G., 1997, History of mud diapirism and trigger mechanisms in the Western Alboran Sea: Tectonophysics, v. 282, no. 1-4, p. 399-422. Poort, J., Kutas, R. I., Klerkx, J., Beaubien, S. E., Lombardi, S., Dimitrov, L., Vassilev, A., and Naudts, L., 2007, Strong heat flow variability in an active shallow gas environment, Dnepr palaeo-delta, Black Sea: Geo-Marine Letters, v. 27, no. 2-4, p. 185-195. Prytkov, A. S., Vasilenko, N. F., and Ershov, V. V., 2014, Simulation of the 2011 South Sakhalin mud volcano eruption based on the GPS data: Russian Journal of Pacific Geology, v. 8, no. 3, p. 224-231. Rau, J., Jhan, J., Lo, C., and Lin, Y., 2011, Landslide mapping using imagery acquired by a fixed-wing UAV: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, v. 38, p. 1-C22. Revil, A., 2002, Genesis of mud volcanoes in sedimentary basins: A solitary wave-based mechanism: Geophysical Research Letters, v. 29, no. 12, p. 4. Rusnak, M., Sladek, J., Kidova, A., and Lehotsky, M., 2018, Template for high-resolution river landscape mapping using UAV technology: Measurement, v. 115, p. 139-151. Salisbury, M. J., Jicha, B. R., de Silva, S. L., Singer, B. S., Jimenez, N. C., and Ort, M. H., 2011, Ar-40/Ar-39 chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province: Geological Society of America Bulletin, v. 123, no. 5-6, p. 821-840. Shih, T., 1967, A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud: Petrol. Geol. Taiwan, v. 5, p. 259-311. Shyu, J. B. H., Sieh, K., Chen, Y. G., and Liu, C. S., 2005, Neotectonic architecture of Taiwan and its implications for future large earthquakes: Journal of Geophysical Research-Solid Earth, v. 110, no. B8, p. 33. Stewart, S. A., and Davies, R. J., 2006, Structure and emplacement of mud volcano systems in the South Caspian Basin: AAPG bulletin, v. 90, no. 5, p. 771-786. Sun, C. H., Chang, S. C., Kuo, C. L., Wu, J. C., Shao, P. H., and Oung, J. N., 2010, Origins of Taiwan's mud volcanoes: Evidence from geochemistry: Journal of Asian Earth Sciences, v. 37, no. 2, p. 105-116. Sun, S.-C., and Liu, C.-S., 1989, Mud diapirs and submarine channel deposits in offshore Kaohsiung-Heugchun, southwest Taiwan: Petroleum Geology of Taiwan, no. 28, p. 1-14. Suppe, J., 1981, Mechanics of mountain building and metamorphism in Taiwan: Mem. Geol. Soc. China, v. 4, no. 6, p. 67-89. Suppe, J., 1984, Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan: Memoir. Geol. Soc. China, v. 6, p. 21-33. Suppe, J., Schaer, J., and Rodgers, J., 1987, The active Taiwan mountain belt: The Anatomy of Mountain Ranges, p. 277-293. Teng, L. S., 1990, Geotectonic evolution of late Cenozoic arc continent collision in Taiwan: Tectonophysics, v. 183, no. 1-4, p. 57-76. Viles, H., 2016, Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science?: Geomorphology, v. 270, p. 121-133. Wang, C. Y., and Manga, M., 2010, Hydrologic responses to earthquakes and a general metric: Geofluids, v. 10, no. 1‐2, p. 206-216. Wang, S., Mei, L., and Yang, C., 1988, Mud volcanoes of Taiwan: Annual Taiwan Museum, v. 31, p. 31-49. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M., 2012, 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications: Geomorphology, v. 179, p. 300-314. Yang, T. F., Yeh, G. H., Fu, C. C., Wang, C. C., Lan, T. F., Lee, H. F., Chen, C. H., Walia, V., and Sung, Q. C., 2004, Composition and exhalation flux of gases from mud volcanoes in Taiwan: Environmental Geology, v. 46, no. 8, p. 1003-1011. Yassir, N. A., 1987, Mud Volcanoes : evidence of Neotectonic activity: Memoir of the Geological Society of China, v. 9, p. 513-524. You, C.-F., Gieskes, J. M., Lee, T., Yui, T.-F., and Chen, H.-W., 2004, Geochemistry of mud volcano fluids in the Taiwan accretionary prism: Applied Geochemistry, v. 19, no. 5, p. 695-707. Yu, M., Huang, Y., Zhou, J. M., and Mao, L., 2017, Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion: Environmental Earth Sciences, v. 76, no. 15, p. 9. 王鑫, 1986, 泥火山地景保留區調查報告, 台北市, 行政院農業委員會. 王鑫, 1988, 台灣泥火山地形景觀, p. 31-50. 台湾総督府殖産局, 1910, 台湾油田調査報告, 台湾総督府民政部殖産局, 20, 257, 254p 図版 地図 p.: 史蹟名勝天然紀念物保存協會, 1914, 史蹟名勝天然紀念物, 不二出版, p. 冊. 宋國城, and 陳力, 2006, 從地形系統觀點探討泥火山地景的敏感性: JOURNAL OF GEOGRAPHICAL SCIENCE, v. 44, p. 39-53. 近藤久次郎, 1922, 鯉魚山ノ爆裂及滾水坪泥火山調査報告: 震災豫防調査會報告, v. 98, p. 1-'11-14'. 柯佳君, 2010, 台灣西南海域泥貫入體之活動與演化: 碩士論文--國立臺灣大學海洋研究所. 飛田, 幹., 神谷, 泉., and 岩橋, 純., 2014, UAV Aerial Photogrammetry in Nishinoshima Island and its Analysis: 国土地理院時報 = Journal of the Geospatial Information Authority of Japan, no. 125, p. 115-124. 海軍省, 1928, 臺灣油田地質概査報告, 海軍省, 2, 2, 186p p.: 張立志, 1953年9月30日, 泥火山的爆發, Volume 4, 聯合報. 張成華, 1993, 臺灣西南部海域之泥貫入體硏究: 碩士論文--國立臺灣大學海洋硏究所. 莊文星, 2010, 臺灣泥火山小地形, in 國立自然科學博物館, ed. 莊惠如, 2006, 台灣西南海域泥貫入體分佈與構造活動之關係: 碩士論文--國立臺灣大學海洋研究所. 陳太山, and 石文卿, 2013, 臺灣西南部的泥火山分佈與油氣探勘潛能: 鑛冶:中國鑛冶工程學會會刊, no. 223, p. 65-74. 陳松春, 2013, 臺灣西南海域上部高屏斜坡泥貫入體及泥火山之分布及相關海床特徵: 國立中央大學. 陸地測量部, 1932, 臺灣に於ける陸地測量事業の概況: 地學雜誌, v. 44, no. 7, p. 377-389. 鳥居敬造, 1930, 高雄州鯉魚山の瓦斯噴出: 臺灣地學記事, v. 1, p. 45-50. 曾威豪, 2006, 台灣西南海域海底泥火山之分布特徵與噴發機制: 臺灣大學, 1-62 p. 童傳浩, 2011, 高雄縣烏山頂泥火山錐體外型變動之監測研究: 清雲科技大學. 黃偉倫, 1995, 台灣西南部海域泥貫入體之分佈與陸上諸背斜之關係及其對沈積環境之影響, 碩士論文--國立臺灣大學海洋硏究所. 葉高華, 2003, 由流體地球化學探討台灣泥火山的成因: 碩士論文--國立臺灣大學海洋硏究所. 福留喜之助, 1908, 臺灣ノ油田ニ就テ: 日本鑛業會誌, v. 24, no. 277, p. 271-289. 趙荃敏, 景國恩, 李寧, and 陳建良, 2014, 鳳山轉換斷層現今之活動行為及其地震潛能分析, 國土測繪與空間資訊, Volume 2, p. 107-129. 鄭筑云, 2015, 萬丹與鳥松泥火山噴發活動特徵之研究: 國立高雄師範大學. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73848 | - |
| dc.description.abstract | 泥火山是一種特殊的地形現象,由地底含水泥質往上流動至地表噴發,並常伴隨著甲烷產生。泥火山的作用可視為流體與氣體物質從岩石圈流向地表、水圈與氣圈的重要途徑,研究泥火山可以幫助我們了解地球內部的地殼運動及流體循環,並與噴發災害、地質構造、甲烷氣體的收支評估、能源開採與相關活動、地形景觀與遊憩活動等相關議題有關。而這些研究都需要仰賴噴發量、噴發週期等基礎資訊來進行近一步的分析。臺灣西南部海域與陸上區域存在許多泥火山,本研究便以西南部陸上噴發規模最大、且具長年記載的萬丹泥火山為研究泥火山的代表對象,嘗試估計與觀測其噴發的時空分布特性。
由於萬丹泥火山具有不定時、不定點、不定量的噴發特性,使得其噴發的機制至今仍未釐清。為了了解萬丹泥火山噴發的特性,可藉由估計噴發體積與時空分布,建立泥火山噴發流體的基本資料,有助於日後分析噴發活動及影響噴發的因子。本研究主要透過兩個研究途徑;一為蒐集與彙整歷史文獻紀錄,以建立長時間的噴發時空分布;二為透過現地測量,估計其精確的噴發量。歷史文獻的分析顯示,萬丹火山歷史上原好發於鯉魚山,日後漸往其東方小丘移動,近年則多發生於一個西北-東南走向的條帶,平均一年約發生一至兩次。現地測量方面,本研究針對此種難以預測確切觀測位置的條件,利用無人飛機的方便性,設計一個相對應的攝影測量流程,以建立數值地表模型與正射影像來估計噴發體積,並發展一個專屬的平差模型。以2018年5月15日的噴發事件為例,估計的噴發量為13,363.17417m3。本研究最後提出萬丹泥火山噴發規模評估,期望能為後續泥火山應用建立分析基礎。 | zh_TW |
| dc.description.abstract | Mud volcanoes are special geomorphic features, which erupt mud materials on the surface with abundant water and methane contents. The process of mud volcanoes can be viewed as one important approach to bring fluid and gas from the lithosphere to the surface, hydrosphere, and atmosphere. Studying mud volcanoes can help us understand crustal movements and fluid circulation at depth, which are associated with topics of eruptional hazards, structural geometry, methane budget, energy exploration, landscape preservation and recreational activities. There are many mud volcanoes on land and offshore southwestern Taiwan, and this study aims to study the Wandan mud volcano, which has the largest eruptional magnitude in the region and long historic records, by estimating and characterizing the spatiotemporal distribution of its eruption.
Because the Wandan mud volcano erupt at varied locations, times, and volumes, the mechanism of its eruption remains unclear. In order to understand the characteristics of its eruption, it requires fundamental information such as eruption volumes and spatiotemporal distributions. This study has two major research approaches: one is compiling historic records to establish its long-term spatiotemporal pattern; the other is estimate its eruption volume by in-situ surveys. The analysis of historic records show that the Wandan volcano occurred at the Liyushan originally and migrates eastwards with time. In recent years, it occurs along a northwest-southeast zone with an average frequency of 1-2 times per year. In terms of in-situ surveys, this study designs a special photogrammetric procedure specifically for such a condition, which is difficult to predict exact location, by utilizing the mobility of UAVs. The study then generates DSMs and orthoimages for precisely estimating eruption volume and develop an adjustment model for the procedure. For the eruption on May 15, 2018, the method estimates the volume of mud is 13,363.17417 m3. This study also estimates eruption magnitude for documented events, providing basis for future studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:11:48Z (GMT). No. of bitstreams: 1 ntu-108-R05228011-1.pdf: 8410038 bytes, checksum: 76c9ac57a316cedc26fcde1277250f0a (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 1 緒論 8
1.1 前言 8 1.2 研究動機 10 1.3 泥火山時空特性之重要性 11 1.4 研究目的 13 1.5 研究問題 14 1.6 論文架構 14 2 文獻回顧 16 2.1 泥火山分布與型態 16 2.2 泥火山噴發機制與觀測 18 2.3 研究區域地質特性 24 3 萬丹泥火山歷史噴發時空模式 28 3.1 前言 28 3.2 文獻記載 29 3.3 歷史噴發之時空分布 37 3.4 討論 44 3.5 結論 47 4 利用無人飛機攝影測量估計萬丹泥火山噴發體積 48 4.1 前言 48 4.2 研究方法 49 4.3 噴發前觀測規劃 53 4.4 噴發後觀測 61 4.5 資料處理 62 4.6 研究結果 70 4.7 體積估計誤差 75 4.8 結論 76 5 利用地表特徵物作為控制點之影像推估近年萬丹泥火山噴發面積 77 5.1 前言 77 5.2 研究方法 78 5.3 研究結果 79 5.4 討論 79 5.5 結論 81 6 綜合分析與討論 82 6.1 噴發規模評估 82 6.2 噴發時空分布特性 85 6.3 萬丹泥火山與地質構造之關係 85 6.4 萬丹泥火山噴發量計算之討論 86 6.5 泥火山泥漿在地表累積總量 87 6.6 未來工作建議 87 7 結論 89 8 參考文獻 90 9 附錄 101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 運動恢復結構 | zh_TW |
| dc.subject | 控制測量 | zh_TW |
| dc.subject | 鯉魚山 | zh_TW |
| dc.subject | 泥貫入體 | zh_TW |
| dc.subject | 多視角立體視覺 | zh_TW |
| dc.subject | mud diapir | en |
| dc.subject | Liyushan | en |
| dc.subject | control survey | en |
| dc.subject | Structure from Motion | en |
| dc.subject | Multi-view stereo | en |
| dc.title | 估計萬丹泥火山噴發體積與時空特性 | zh_TW |
| dc.title | Estimating Volumes and Spatiotemporal Pattern of Mud Volcano Eruption in the Wandan Region | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 景國恩(Kuo-En Ching),韓仁毓(Jen-Yu Han),王聖鐸(Sendo Wang) | |
| dc.subject.keyword | 泥貫入體,鯉魚山,控制測量,運動恢復結構,多視角立體視覺, | zh_TW |
| dc.subject.keyword | mud diapir,Liyushan,control survey,Structure from Motion,Multi-view stereo, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU201903670 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 8.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
