請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73836
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 閔明源(Ming-Yuan Min) | |
dc.contributor.author | Hsing-Chun Tsai | en |
dc.contributor.author | 蔡幸君 | zh_TW |
dc.date.accessioned | 2021-06-17T08:11:29Z | - |
dc.date.available | 2019-08-18 | |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-15 | |
dc.identifier.citation | Alsene, Karen M , and Vaishali P Bakshi. 2011. 'Pharmacological Stimulation of Locus Coeruleus Reveals a New Antipsychotic-Responsive Pathway for Deficient Sensorimotor Gating', Neuropsychopharmacology, 36.
Armbruster, Blaine N. , Xiang Li, Mark H. Pausch, Stefan Herlitze, and Bryan L. Roth. 2007. 'Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand', PNAS, 104. Aston-Jones, Gary, Sheng Chen, Yan Zhu, and Michael L. Oshinsky. 2001. 'A neural circuit for circadian regulation of arousal', Nature Neuroscience, 4. Aston-Jones, Gary, and Jonathan D. Cohen. 2005. 'An Integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance', Annual review of neuroscience, 28. Aston-Jones, Gary, Matthew Ennis, Vincent A. Pieribone, W. Thompson Nickell, and Michael T. Shipley. 1986. 'The brain bucleus locus coeruleus: restricted afferent control of a broad efferent network', Science, 234. Aston-Jones, Gary, Janusz Rajkowski, and Jonathan D. Cohen. 1999. 'Role of locus coeruleus in attention and behavioral flexibility', Biological Psychiatry, 46. Aston-Jones, Gary, Michael T. Shipley, and Rheinhard Grzanna. 1995. 'Locus coeruleus A5 and A7 noradrenergic cell groups', In: Paxinos G (ed) The rat nervous system.: 183-214. Aston-Jones, Gary, Yan Zhu, and J. Patrick Card. 2004. 'Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool', The Journal of Neuroscience, 24. Bernstein, Alison I , Sean P Garrison, Gerard P Zambetti, and Karen L O'Malley. 2011. '6-OHDA generated ROS induces DNA damage and p53- and PUMA-dependent cell death', Molecular Neurodegeneration, 6. Berridgea, Craig W. , and Barry D. Waterhouse. 2003. 'The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes', Brain Research Reviews, 42. Boender, Arjen J., Johannes W. de Jong, Linde Boekhoudt, Mieneke C. M. Luijendijk, Geoffrey van der Plasse, and Roger A. H. Adan. 2014. 'Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo', PLoS ONE, 9. Carter, Matthew E, Ofer Yizhar, Sachiko Chikahisa, Hieu Nguyen, Antoine Adamantidis, Seiji Nishino, Karl Deisseroth, and Luis de Lecea. 2010. 'Tuning arousal with optogenetic modulation of locus coeruleus neurons', Nature Neuroscience, 13. Coelln, Rainer von , Bobby Thomas, Joseph M. Savitt, Kah Leong Lim, Masayuki Sasaki, Ellen J. Hess, Valina L. Dawson, and Ted M. Dawson. 2004. 'Loss of locus coeruleus neurons and reduced startle in parkin null mice', PNAS, 101. Cohen, G, R. E. Heikkila, B. Allis, F. Cabbat, D. Dembiec, D. MacNamee, C. Mytilineou, and B. Winston. 1976. 'Destruction of sympathetic nerve terminals by 6-hydroxydopamine: protection by 1-phenyl-3-(2-thiazolyl)-2-thiourea, diethyldithiocarbamate, methimazole, cysteamine, ethanol and n-butanol.', The Journal of Pharmacology and Experimental Therapeutics, 199. Dahlström, Annica, and Kjell Fuxe. 1965. 'Evidence for the existence of monoamine-containing neurons in the central nervous system', Acta Phsiologia Scandinavica, 62. Ennis, Matthew, and Gary Aston-Jones. 1988. 'Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain.', Journal of Neuroscience, 10. Gold, P. W. . 2015. 'The organization of the stress system and its dysregulation in depressive illness', Molecular Psychiatry, 20. Gomez, Juan L. , Jordi Bonaventura, Wojciech Lesniak, William B. Mathews, Polina Sysa-Shah, Lionel A. Rodriguez, Randall J. Ellis, Christopher T. Richie, Brandon K. Harvey, Robert F. Dannals, Martin G. Pomper, Antonello Bonci, and Michael Michaelides. 2017. 'Chemogenetics revealed: DREADD occupancy and activation via converted clozapine', Science, 357. Gould, Todd D. 2009. 'Mood and anxiety related phenotypes in mice: characterization using behavioral tests'. Graham, Frances K. . 1975. 'The More or Less Startling Effects of Weak Prestimulation', Psychophysiology, 12. Hormigo, Sebastia ́n, Ricardo Go ́mez-Nieto, Orlando Castellano, M. Javier Herrero-Turrio ́n, Dolores E. Lo ́pez, and Jose ́ de Anchieta de Castro e Horta-Ju ́nior. 2015. 'The noradrenergic projection from the locus coeruleus to the cochlear root neurons in rats', Brain Structure and Function, 220. Hormigo, Sebastia ́n, Ricardo Gómez-Nieto, Consuelo Sancho, Javier Herrero-Turrión, Juan Carro, Dolores E. López, and José de Anchieta de Castro e Horta-Júnior. 2017. 'Morphological correlates of sex differences in acoustic startle response and prepulse inhibition through projections from locus coeruleus to cochlear root neurons', Brain Structure and Function, 222. Horvath, Tamas L. , Christelle Peyron, Sabrina Diano, Alexander Ivanov, Gary Aston‐Jones, Thomas S. Kilduff, and Anthony N. van den Pol. 1999. 'Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system', Journal of Comparative Neuroscience, 415. Kohl, Sina , Karsten Heekeren, Joachim Klosterkötter, and Jens Peter Kühn. 2013. 'Prepulse inhibition in psychiatric disorders – Apart from schizophrenia', Journal of Psychiatric Research, 47. Loughlin, Sandra E., Stephen L. Foote, and Rheinhard Grzanna. 1986. 'Efferent projections of nucleus locus coeruleus: Morphologic subpopulations have different efferent targets', Neuroscience, 18. MacLaren, Duncan A. A. , Richard W. Browne, Jessica K. Shaw, Sandhya Krishnan Radhakrishnan, Prachi Khare, Rodrigo A. España, and Stewart D. Clark. 2016. 'Clozapine N-Oxide Administration Produces Behavioral Effects in Long–Evans Rats: Implications for Designing DREADD Experiments', eNeuro, 5. Mariena, Marc R., Francis C. Colpaerta, and Alan C. Rosenquist. 2004. 'Noradrenergic mechanisms in neurodegenerative diseases: a theory', Brain Research Reviews, 45. Mason, Stephen T., and Hans C. Fibiger. 1979. 'Noradrenaline, fear and extinction', Brain Research, 165. Naegeli, Christoph , Thomas Zeffiro, Marco Piccirelli, Assia Jaillard, Anina Weilenmann, Katayun Hassanpour, Matthis Schick, Michael Rufer, Scott P. Orr, and Christoph Mueller-Pfeiffer. 2017. 'Locus coeruleus activity mediates hyperresponsiveness in posttraumatic stress disorder', Biological Psychiatry, 83. Paumier, Katrina L. , Stacey J. Sukoff Rizzo, Zdenek Berger, Yi Chen, Cathleen Gonzales, Edward Kaftan, Li Li, Susan Lotarski, Michael Monaghan, Wei Shen, Polina Stolyar, Dmytro Vasilyev, Margaret Zaleska, Warren D. Hirst , and John Dunlop. 2013. 'Behavioral Characterization of A53T Mice Reveals Early and Late Stage Deficits Related to Parkinson’s Disease', PLoS ONE, 8. Pieribone, Vincent A., Gary Aston-Jones, and Martha C. Bohn. 1988. 'Adrenergic and non-adrenergic neurons in the C1 and C3 areas project to locus coeruleus: A fluorescent double labeling study', neuroscience Letters, 85. Polak, Paul E. , Sergey Kalinin, and Douglas L. Feinstein. 2011. 'Locus coeruleus damage and noradrenaline reductions in multiple sclerosis and experimental autoimmune encephalomyelitis', Brain, 134. Reil, J. C. 1809. 'Untersuchungen uber den Bau des grossen Gehims im Menschen', Arch. Physiol., 9. Roth, Bryan L. 2016. 'DREADDs for Neuroscientists', Neuron, 89. Schwarz, Lindsay A. , and Liqun Luo. 2015. 'Organization of the Locus Coeruleus-Norepinephrine System', Current Biology, 25. Schwarz, Lindsay A. , Kazunari Miyamichi, Xiaojing J. Gao, Kevin T. Beier, Brandon Weissbourd, Katherine E. DeLoach, Jing Ren, Sandy Ibanes, Robert C. Malenka, Eric J. Kremer, and Liqun Luo. 2015. 'Viral-genetic tracing of the input–output organization of a central noradrenaline circuit', Nature, 524. Sharma, Yukti , Tao Xu, Werner M. Graf, Archie Fobbs, Chet C. Sherwood, Patrick R. Hof, John M. Allman, and Kebreten F. Manaye. 2010. 'Comparative Anatomy of the Locus Coeruleus in Humans and Non-Human Primates', Journal of Comparative Neuroscience, 518. Shine, James M. . 2019. 'Neuromodulatory Influences on Integration and Segregation in the Brain', Trends in Cognitive Sciences, 23. Simola, Nicola, Micaela Morelli, and Anna R. Carta. 2007. 'The 6-hydroxydopamine model of Parkinson's Disease', Neurotoxicity Research, 11. Smith, Kyle S. , David J. Bucci, Stephen V. Mahler, and Bryan W. Luikart. 2016. 'DREADDs: Use and Application in Behavioral Neuroscience', Behavioral Neuroscience, 130. Steininger, Teresa L. , Hui Gong, Dennis Mcginty, and Ronald Szymusiak. 2000. 'Subregional organization of preoptic area /anterior hypothalamic projections to arousal‐related monoaminergic cell groups', Journal of Comparative Neuroscience, 429. Sudo, Ayako. 1985. 'Decrease in adrenaline content of various organs of the rat after 6-hydroxydopamine', European Journal of Pharmacology, 114. Swanson, L. W. . 1976. 'The locus coeruleus: a cytoarchitectonic, Golgi and immunohistochemical study in the Albino rat', Brain Research, 110. Szot, Patricia , Allyn Franklin, Cristina Miguelez, Yangqing Wang, Igor Vidaurrazaga, Luisa Ugedo, Carl Sikkema, Charles W. Wilkinson, and Murray A. Raskind. 2016. 'Depressive-like behavior observed with a minimal loss of locus coeruleus (LC) neurons following administration of 6- hydroxydopamine is associated with electrophysiological changes and reversed with precursors of norepinephrine', Neuropharmacology, 101. Villanueva, M. M. , P. Soares‐da‐Silva, and W. Osswald. 1994. 'Effect of sympathetic denervation on the relaxing responses of rabbit arterial smooth muscle', Autonomic & Autacoid Pharmacology, 14. Wu, Frank , S. A. Gulyani, E. Yau, Emmanuel J.M. Mignot, B. Phan, and Jerome M. Siegel. 1999. 'Locus coeruleus neurons: cessation of activity during cataplexy', Neuroscience, 91 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73836 | - |
dc.description.abstract | 藍斑核(locus coeruleus, LC)神經元主要分泌正腎上腺素(noradrenaline, NA),並且廣泛投射於中樞神經系統,已知其細胞放電型態轉換,持續性(tonic)與相位性(phasic activation),對認知行為有適應性增益(adaptive gain)作用。持續性放電喚醒個體並使之敏銳於環境刺激;而當訊息統合後,前於任務執行的相位性放電能夠過濾無關刺激,進而優化表現。此系統的受損也已知關乎許多神經失調病徵,例如焦慮與憂鬱、阿茲海默症與帕金森氏症等病症。儘管如此,兩種放電型態轉換的細胞機制仍未被完全了解。作為了解感覺動作閾控(sensorimotor gating)常用的一項前注意訊息處理(preattentive information processing)指標,前刺激抑制作用(pre-pulse inhibition)越強,過濾不相干訊息效率越高。過去研究指出以藥理操作興奮藍斑核的持續性放電,會減弱前刺激抑制作用。實驗室研究亦發現當以化學遺傳學(chemogenetic)方法降低藍斑核旁丙胺基丁酸抑制性中間神經元(GABAergic inhibitory interneuron)之活性,會增加藍斑核神經元的相位性放電。此篇研究使用前述化學遺傳學抑制方法提升了前刺激抑制作用,並排除此行為改變源於其他因素的可能性,例如所施打藥物在其他腦區造成的預期外影響,或是此操作損及一般運動能力進而導致行為變化的可能性,亦證實了藍斑核確實參與此行為變化。因此,此研究顯示老鼠會因抑制丙胺基丁酸抑制性中間神經元,提升藍斑核相位性放電,傾向注意力更集中的行為。換句話說,此抑制性中間神經元參與在相位性到持續性放電的轉換中。 | zh_TW |
dc.description.abstract | Global innervation of locus coeruleus-noradrenaline (LC-NA) system to central nervous system modulates functions correlated to LC firing patterns, tonic and phasic activities. The tonic activation regulates wakefulness and alertness whereas phasic activation responds to environmental stimuli and optimizes task-related performance. Nevertheless, the cell mechanism underlying the integration of two activations remains largely unknown. The suppression of inhibitory interneurons (IntNs) in peri-LC region causing a higher frequency of LC phasic activation has be provided in our lab with designer-receptor-exclusively-activated-by-designer-drug (DREADD). The hM4Di receptor, an inhibitory DREADD, would specifically express on the inhibitory IntNs with injection carried by Cre-dependent adeno-associated virus (AAV) into vesicular GABA transporter (VGAT)-Cre knock-in mice. Thus, this study attempts to offer a behavioral explanation to this chemogenetic operation. Pre-pulse inhibition (PPI) is a robust operational measurement of sensorimotor gating, a preattentive form of information-processing to filter irrelevant information. Previous study has shown that pharmacological activation of tonic LC activity decreased PPI. In this study, we reported an enhancement of PPI with DREADD. And excluded are the possible effects from virus infection, CNO offsite bindings, and the offsite chemogenetic effect owing to virus leakage. Meanwhile, the increased PPI is not secondary to general motor deficits. Furthermore, the involvement of LC is also confirmed with 6-OHDA. These results demonstrate that the mice showed more attentive possibly due to the enhanced phasic activation when local inhibitory IntNs in the LC were suppressed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:11:29Z (GMT). No. of bitstreams: 1 ntu-108-R06b21017-1.pdf: 9517847 bytes, checksum: 3d34f804a9f6a8993269ca15be139bb2 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 1
致謝 2 中文摘要 3 Abstract 4 Content 5 Chapter 1 Introduction 8 1.1 The locus coeruleus (LC) 8 1.2 Designer-Receptors-Exclusively-Activated-by-Designer-Drug 10 1.3 The pre-pulse inhibition (PPI) 12 1.4 The open field test (OFT) 13 1.5 6-Hydroxydopamine (6-OHDA) administration 14 1.6 Aim of this study 15 Chapter 2 Materials and Methods 16 2.1 Animals 16 2.2 Stereotaxic surgery for AAV injection 16 2.2.1 Injected AAV 17 2.2.2 injected 6-hydroxydopamine 17 2.3 CNO Intraperitoneal administration 17 2.4 Acoustic startle response (STR) and prepulse inhibition (PPI) 18 2.5 Open field test for locomotor activity 19 2.6 Immunohistochemistry 19 2.7 Standard of data selection 20 2.8 Data analysis 20 2.9 Experimental design 20 2.10 Experiment schedule 22 Chapter 3 Results 23 3.1 Inactivation of inhibitory IntNs in LC lead to increased PPI 23 3.2 Exclusion of possible factors to the increased PPI 23 3.2.1 Possible CNO nonspecific effect 23 3.2.2 Possible effect from AAV infection or surgery lesion to the LC 23 3.2.3 Possible effect from the infection outside the LC 24 3.2.4 No correlation between the trend of STR and the increased PPI 25 3.3 The increased PPI is not secondary to general motor deficit 26 3.4 The specificity of NA transmission to the increased PPI 26 Chapter 4 Discussion 27 4.1 Reduced inhibitory input to LC enhances sensorimotor gating 27 4.2 Relationship between LC activation and sensorimotor gating 29 4.3 The behavioral role of the LC inhibitory IntNs 29 4.4 Increased grooming in no-LC mice is not an anxiety-like behavior 30 4.5 Future work 31 Chapter 5 Reference 32 Chapter 6 Tables 38 Table 1. Protocol of the acoustic startle behavior test 38 Table 2. Protocol of the immunohistochemistry for injection site confirmation 39 Table 3. Protocol of the Nissl stain 40 Chapter 7 Figures 41 Figure 1. The acoustic startle behavioral test 41 Figure 2. The linear regression analysis of STR and pre-pulse inhibition with administration of vehicle and CNO. 42 Figure 3. The control behavior of the treatment group. 43 Figure 4. The behavioral results of the no-LC (6-OHDA) group. 44 Figure 5. The infection of the mCherry AAV at locus coeruleus 45 Figure 6. The injection sites of the DREADD virus (n=12) 46 Figure 7. The injection sites of the control virus group (n=6) 47 Figure 8. The injection sites of the offsite control group (n=9) 48 Figure 9. The mCherry AAV infection with 6-OHDA injection at LC 49 Figure 10. The injection sites of the no-LC group (n=7) 50 | |
dc.language.iso | en | |
dc.title | 藍斑核抑制性中間神經元在小鼠驚嚇反應與前刺激抑制行為的角色 | zh_TW |
dc.title | Role of Inhibitory Interneurons in the Locus Coeruleus in Startle and Pre-pulse Inhibition Behavior in Mouse | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 姚皓傑,陳志成,楊琇雯,陳瑞芬 | |
dc.subject.keyword | 藍斑核,丙胺基丁酸中間神經元,前刺激抑制作用,感覺動作閾控,化學遺傳學, | zh_TW |
dc.subject.keyword | Locus Coeruleus,GABAergic Interneuron,Pre-pulse Inhibition,Sensorimotor gating,Chemogenetic, | en |
dc.relation.page | 50 | |
dc.identifier.doi | 10.6342/NTU201903603 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-16 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 9.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。