Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73822
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳沛隆(Pei-Lung Chen) | |
dc.contributor.author | Yi-Chieh Chen | en |
dc.contributor.author | 陳奕潔 | zh_TW |
dc.date.accessioned | 2021-06-17T08:11:06Z | - |
dc.date.available | 2019-08-26 | |
dc.date.copyright | 2019-08-26 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-15 | |
dc.identifier.citation | [1] Yip V, Hawcutt DB, Pirmohamed M. (2015). Pharmacogenetic markers of drug efficacy and toxicity. Clin Pharmacol Ther. 98(1):61-70.
[2] Becquemont L. (2009). 'Pharmacogenomics of adverse drug reactions: practical applications and perspectives'. Pharmacogenomics. 10 (6): 961–9. [3] Urban TJ. (2010). 'Race, ethnicity, ancestry, and pharmacogenetics.' Mt Sinai J Med. 77(2):133-9. [4] Sheffield LJ, Phillimore HE. (2009). 'Clinical use of pharmacogenomic tests in 2009'. Clin Biochem Rev. 30 (2): 55–65. [5] Johnson JA. (2003). 'Pharmacogenetics: potential for individualized drug therapy through genetics'. Trends Genet. 19 (11): 660–6. [6] Bank PC, Swen JJ, Guchelaar HJ. (2014). Pharmacogenetic biomarkers for predicting drug response. Expert Rev Mol Diagn 14: 723-735. [7] Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, et al. (2012). Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92: 414-417. [8] Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. (2013) Applications of CYP450 testing in the clinical setting. Mol Diagn Ther 17: 165-184 [9] Moyer AM, Caraballo PJ. (2017) The challenges of implementing pharmacogenomic testing in the clinic. Expert Rev Pharmacoecon Outcomes Res.17(6):567-577 [10] Gaedigk A. (2013) Complexities of CYP2D6 gene analysis and interpretation. Int Rev Psychiatry 25: 534-553 [11] Pavlos R, Mallal S, Phillips E. (2012) HLA and pharmacogenetics of drug hypersensitivity. Pharmacogenomics 13: 1285-1306 [12] Ramamoorthy A, Pacanowski MA, Bull J, Zhang L. (2015) Racial/ethnic differences in drug disposition and response: review of recently approved drugs. Clin Pharmacol Ther 97: 263-273 [13] Martis S, Mei H, Vijzelaar R, Edelmann L, Desnick RJ, et al. (2013) Multi-ethnic cytochrome-P450 copy number profiling: novel pharmacogenetic alleles and mechanism of copy number variation formation. Pharmacogenomics J 13: 558-566 [14] Van der Wouden CH, et al. (2019) Development of the PGx-Passport: A Panel of Actionable Germline Genetic Variants for Pre-emptive Pharmacogenetic Testing. Clin Pharmacol Ther. [15] Jason L. Vassy MD, MPH, et al. (2019) Pharmacogenetic testing in the Veterans Health Administration (VHA): policy recommendations from the VHA Clinical Pharmacogenetics Subcommittee. Genetics in Medicine 21, 382–390 [16] Iris Cohn, Tara A. Paton, Christian R. Marshall, Raveen Basran, Dimitri J. Stavropoulos, Peter N. Ray, Nasim Monfared, Robin Z. Hayeems, M. Stephen Meyn, Sarah Bowdin, Stephen W. Scherer, Ronald D. Cohn and Shinya Ito. (2017) Genome sequencing as a platform for pharmacogenetic genotyping: a pediatric cohort study. npj Genomic Medicine. 2:19 [17] Qiao, W., Yang, Y., Sebra, R., Mendiratta, G., Gaedigk, A., Desnick, R. J., & Scott, S. A. (2016). Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Human mutation, 37(3), 315–323 [18] Guengerich FP. (2008). 'Cytochrome p450 and chemical toxicology'. Chemical Research in Toxicology. 21 (1): 70–83. [19] Zanger UM, Schwab M. (2013). Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 138(1):103-41. [20] Sim S.C., Ingelman-Sundberg M. (2013) Update on Allele Nomenclature for Human Cytochromes P450 and the Human Cytochrome P450 Allele (CYP-Allele) Nomenclature Database. Methods Mol Biol. 987:251-9. [21] Tornio A, Backman JT. (2018) Cytochrome P450 in Pharmacogenetics: An Update. Adv Pharmacol. 83:3-32. [22] Preissner, S. C., Hoffmann, M. F., Preissner, R., Dunkel, M., Gewiess, A., & Preissner, S. (2013). Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PloS one, 8(12), e82562. [23] Tyndale R.F. & Sellers E.M. Variable CYP2A6‐mediated nicotine metabolism alters smoking behavior and risk. Drug Metab. Dispos.29(4 Pt 2), 548–552 (2001). [24] Chenoweth MJ, O'Loughlin J, Sylvestre MP, Tyndale RF. (2013) CYP2A6 slow nicotine metabolism is associated with increased quitting by adolescent smokers. Pharmacogenetics and genomics. 23(4):232–5. [25] Zhou, Y., Ingelman-Sundberg, M., & Lauschke, V. M. (2017). Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clinical pharmacology and therapeutics, 102(4), 688–700. doi:10.1002/cpt.690 [26] Ward B.A., Gorski J.C., Jones D.R., Hall S.D., Flockhart D.A. & Desta Z. (2003). The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J. Pharmacol. Exp. Ther. 306, 287–300 [27] Pinillos F, et al. (2016). Case report: severe central nervous system manifestations associated with aberrant efavirenz metabolism in children: the role of CYP2B6 genetic variation. BMC Infect. Dis. 16, 56 [28] Claw KG, Beans JA, Lee SB, Avey JP, Stapleton PA, Scherer SE, El-Boraie A, Tyndale RF, Nickerson DA, Dillard DA, Thummel KE, Robinson RF. (2019) Pharmacogenomics of nicotine metabolism: novel CYP2A6 and CYP2B6 genetic variation patterns in Alaska Native and American Indian populations. Nicotine Tob Res. [29] Hertz D.L. et al. (2013). CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann. Oncol. 24, 1472–1478 [30] Bergmann TK, Brasch-Andersen C, Green H, et al. (2011) Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J. 11(2):113–120. [31] Rettie AE, Jones JP (2005). 'Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics'. Annual Review of Pharmacology and Toxicology. 45: 477–94. [32] Franco V. & Perucca E. (2015). CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects. Expert Opin. Drug Metab. Toxicol. 11, 1269–1279 [33] Scott, S. A., Khasawneh, R., Peter, I., Kornreich, R., & Desnick, R. J. (2010). Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics, 11(6), 781–791. [34] Carolina Céspedes-Garro, Ingrid Fricke-Galindo, María Eugenia G Naranjo, Fernanda Rodrigues-Soares, Humberto Fariñas, Fernando de Andrés, Marisol López-López, Eva M Peñas-Lledó & Adrián LLerena (2015) Worldwide interethnic variability and geographical distribution of CYP2C9 genotypes and phenotypes. Expert Opinion on Drug Metabolism & Toxicology, 11:12, 1893-1905. [35] Garcia-Martin E, Martinez C, Ladero JM. (2006) Interethnic and intraethnic variability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals. Mol Diagn Ther. 10:29-40 [36] Lee MT, Chen CH, Chou CH, Lu LS, Chuang HP, Chen YT, Saleem AN, Wen MS, Chen JJ, Wu JY, Chen YT. (2009) Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics. 10(12):1905-13. [37] Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J. (2010) Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol. 69(3):222-30. [38] I Fricke-Galindo, C Céspedes-Garro, F Rodrigues-Soares, M E G Naranjo, Á Delgado, F de Andrés, M López-López, E Peñas-Lledó & A LLerena. (2016) Interethnic variation of CYP2C19 alleles, ‘predicted’ phenotypes and ‘measured’ metabolic phenotypes across world populations. The Pharmacogenomics Journal, volume16, pages113–123 [39] Ingelman-Sundberg, M. (2005). Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects, and functional diversity. Pharmacogenomics J 5:6–13. [40] Zhou, S. F., Liu, J. P., Lai, X. S. (2009). Substrate specificity, inhibitors, and regulation of human cytochrome P450 2D6 and implications in drug development. Curr Med Chem 16:2661–2805. [41] Crews, K. R., Gaedigk, A., Dunnenberger, H. M., Klein, T. E., Shen, D. D., Callaghan, J. T., … Clinical Pharmacogenetics Implementation Consortium (2012). Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clinical pharmacology and therapeutics, 91(2), 321–326. [42] Goetz, M. P., Sangkuhl, K., Guchelaar, H. J., Schwab, M., Province, M., Whirl-Carrillo, M., … Klein, T. E. (2018). Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clinical pharmacology and therapeutics, 103(5), 770–777. [43] Bell, G. C., Caudle, K. E., Whirl-Carrillo, M., Gordon, R. J., Hikino, K., Prows, C. A., … Schwab, M. (2017). Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clinical pharmacology and therapeutics, 102(2), 213–218. [44] Sen, A., & Stark, H. (2019). Role of cytochrome P450 polymorphisms and functions in development of ulcerative colitis. World journal of gastroenterology, 25(23), 2846–2862. [45] Wang X, Li J, Dong G, Yue J. (2014) The endogenous substrates of brain CYP2D. Eur J Pharmacol. 724:211-8. [46] Twist, G. P. et al. Constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences. NPJ Genomic Med. 1, 15007 (2016). [47] Bertilsson, L., Dahl, M. L., Dalén, P., & Al-Shurbaji, A. (2002). Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. British journal of clinical pharmacology, 53(2), 111–122. [48] Del Tredici, A. L., Malhotra, A., Dedek, M., Espin, F., Roach, D., Zhu, G. D., … Moreno, T. A. (2018) Frequency of CYP2D6 Alleles Including Structural Variants in the United States. Frontiers in pharmacology, 9, 305. [49] Naranjo MG. et al. (2018) Interethnic Variability in CYP2D6, CYP2C9, and CYP2C19 Genes and Predicted Drug Metabolism Phenotypes Among 6060 Ibero- and Native Americans: RIBEF-CEIBA Consortium Report on Population Pharmacogenomics. OMICS. 22(9):575-588. [50] Bradford LD. (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 3(2):229-43. [51] Andrea Gaedigk, Katrin Sangkuhl, Michelle Whirl-Carrillo, Teri Klein & J. Steven Leeder PharmD. (2017) Prediction of CYP2D6 phenotype from genotype across world populations. Genetics in Medicine. volume19, pages69–76 [52] Qiao W, Martis S, Mendiratta G, Shi L, Botton MR, Yang Y, Gaedigk A, Vijzelaar R, Edelmann L, Kornreich R, Desnick RJ, Scott SA. (2019) Integrated CYP2D6 interrogation for multiethnic copy number and tandem allele detection. Pharmacogenomics. 2019 Jan;20(1):9-20. [53] Chan W, Li MS, Sundaram SK, Tomlinson B, Cheung PY, Tzang CH. (2019) CYP2D6 allele frequencies, copy number variants, and tandems in the population of Hong Kong. J Clin Lab Anal. [54] Naoya Hosono, Mamoru Kato, Kazuma Kiyotani, Taisei Mushiroda, Sadaaki Takata, Hiroko Sato, Hanae Amitani, Yumiko Tsuchiya, Keiko Yamazaki, Tatsuhiko Tsunoda, Hitoshi Zembutsu, Yusuke Nakamura and Michiaki Kubo. (2009). CYP2D6 Genotyping for Functional-Gene Dosage Analysis by Allele Copy Number Detection. Clinical Chemistry. [55] Finta C. & Zaphiropoulos P.G. (2000). The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene 260, 13–23 [56] Williams J.A. et al. (2002). Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab. Dispos. 30, 883–89 [57] Caldwell, M. D., Awad, T., Johnson, J. A., Gage, B. F., Falkowski, M., Gardina, P., … Burmester, J. K. (2008). CYP4F2 genetic variant alters required warfarin dose. Blood, 111(8), 4106–4112. [58] Cen, H. J., Zeng, W. T., Leng, X. Y., Huang, M., Chen, X., Li, J. L., … Zhao, L. Z. (2010). CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement. British journal of clinical pharmacology, 70(2), 234–240. [59] Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., … Law, M. (2012). Comparison of next-generation sequencing systems. Journal of biomedicine & biotechnology, 2012, 251364. [60] Metzker, M. L. (2010). Sequencing technologies — the next generation. Nat. Rev. Genet. 11, 31–46 [61] Nielsen R (2010). 'Genomics: In search of rare human variants'. Nature. 467 (7319): 1050–1. [62] Harismendy, O., Ng, P. C., Strausberg, R. L., Wang, X., Stockwell, T. B., Beeson, K. Y., … Frazer, K. A. (2009). Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome biology, 10(3), R32. [63] Petersen, B. S., Fredrich, B., Hoeppner, M. P., Ellinghaus, D., & Franke, A. (2017). Opportunities and challenges of whole-genome and -exome sequencing. BMC genetics, 18(1), 14. [64] Michael L. Metzker (2010). Sequencing technologies — the next generation Nature Reviews Genetics volume11, pages31–46 [65] Clarke, L., Fairley, S., Zheng-Bradley, X., Streeter, I., Perry, E., Lowy, E., … Flicek, P. (2017). The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic acids research, 45(D1), D854–D859. [66] Zook, J. M., Catoe, D., McDaniel, J., Vang, L., Spies, N., Sidow, A., … Salit, M. (2016). Extensive sequencing of seven human genomes to characterize benchmark reference materials. Scientific data, 3, 160025. [67] Eberle, MA et al. (2017) A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree. Genome Research 27: 157-164. [68] Lin, J. C., Fan, C. T., Liao, C. C., & Chen, Y. S. (2018). Taiwan Biobank: making cross-database convergence possible in the Big Data era. GigaScience, 7(1), 1–4. [69] Zhang G, Zhang Y, Ling Y, Jia J. Web resources for pharmacogenomics. Genomics Proteomics Bioinformatics 13: 51-54 (2015) [70] Relling, M. V., & Klein, T. E. (2011). CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clinical pharmacology and therapeutics, 89(3), 464–467. [71] Caudle, K. E., Klein, T. E., Hoffman, J. M., Muller, D. J., Whirl-Carrillo, M., Gong, L., … Johnson, S. G. (2014). Incorporation of pharmacogenomics into routine clinical practice: The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Current drug metabolism, 15(2), 209–217. [72] Caudle, Kelly E et al. “Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC).” Genetics in medicine: official journal of the American College of Medical Genetics vol. 19,2 (2017): 215-223. [73] Thorn CF1, Klein TE, Altman RB. (2005) PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Methods Mol Biol. 311:179-91. [74] Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B., & Klein, T. E. (2018). PharmGKB: A worldwide resource for pharmacogenomic information. Wiley interdisciplinary reviews. Systems biology and medicine, 10(4), e1417. [75] Gordon, A. S., Fulton, R. S., Qin, X., Mardis, E. R., Nickerson, D. A., & Scherer, S. (2016). PGRNseq: a targeted capture sequencing panel for pharmacogenetic research and implementation. Pharmacogenetics and genomics, 26(4), 161–168. [76] Luzum, J. A., Pakyz, R. E., Elsey, A. R., Haidar, C. E., Peterson, J. F., Whirl-Carrillo, M., ... Freimuth, R. (2017). The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Outcomes and Metrics of Pharmacogenetic Implementations Across Diverse Healthcare Systems. Clinical Pharmacology and Therapeutics. [77] Relling, M. V., Krauss, R. M., Roden, D. M., Klein, T. E., Fowler, D. M., Terada, N., … Giacomini, K. M. (2017). New Pharmacogenomics Research Network: An Open Community Catalyzing Research and Translation in Precision Medicine. Clinical pharmacology and therapeutics, 102(6), 897–902. [78] Gaedigk, A., Ingelman-Sundberg, M., Miller, N. A., Leeder, J. S., Whirl-Carrillo, M., Klein, T. E., & PharmVar Steering Committee (2018). The Pharmacogene Variation (PharmVar) Consortium: Incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clinical pharmacology and therapeutics, 103(3), 399–401. [79] Gaedigk, A., Sangkuhl, K., Whirl-Carrillo, M., Twist, G. P., Klein, T. E., Miller, N. A., & PharmVar Steering Committee (2019). The Evolution of PharmVar. Clinical pharmacology and therapeutics, 105(1), 29–32. doi:10.1002/cpt.1275 [80] Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60. [81] Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9. [82] McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., … DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome research, 20(9), 1297–1303. [83] DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., … Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics, 43(5), 491–498. [84] Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., … DePristo, M. A. (2013). From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Current protocols in bioinformatics, 43(1110), 11.10.1–11.10.33. [85] James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov. (2011). Integrative Genomics Viewer. Nature Biotechnology. 29, 24–26. [86] Helga Thorvaldsdóttir, James T. Robinson, Jill P. Mesirov. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics. 14, 178-192. [87] James T. Robinson, Helga Thorvaldsdóttir, Aaron M. Wenger, Ahmet Zehir, Jill P. Mesirov. (2017). Variant Review with the Integrative Genomics Viewer (IGV). Cancer Research. 77(21) 31-34. [88] Numanagić, I. et al. (2015). Cypiripi: exact genotyping of CYP2D6 using high-throughput sequencing data. Bioinformatics 31, i27–i34 [89] Numanagić, Ibrahim et al. (2018) Allelic decomposition and exact genotyping of highly polymorphic and structurally variant genes. Nature Communications 9: 828 [90] Lee, Seung-Been, et al. (2019) Stargazer: a software tool for calling star alleles from next-generation sequencing data using CYP2D6 as a model. Genetics in Medicine 21: 361–372. [91] Lee SB, Wheeler MM, Thummel KE, Nickerson DA. (2019) Calling star alleles with Stargazer in 28 pharmacogenes with whole genome sequences. Clin Pharmacol Ther. [92] Gaedigk A, Bradford LD, Alander SW, Leeder JS. (2006). CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status. Drug Metab. Dispos. 34(4), 563–569 [93] Gaedigk A, Ndjountché L, Divakaran K, Dianne Bradford L, Zineh I, Oberlander TF, Brousseau DC, McCarver DG, Johnson JA, Alander SW, Wayne Riggs K, Steven Leeder J. (2007) Cytochrome P4502D6 (CYP2D6) gene locus heterogeneity: characterization of gene duplication events. Clin Pharmacol Ther. 81(2):242-51. [94] Gurwitz D, Pirmohamed M. (2010) Pharmacogenomics: the importance of accurate phenotypes. Pharmacogenomics. 11: 469–470. [95] Yang, Y., Botton, M. R., Scott, E. R., & Scott, S. A. (2017). Sequencing the CYP2D6 gene: from variant allele discovery to clinical pharmacogenetic testing. Pharmacogenomics, 18(7), 673–685. [96] Langaee T, Hamadeh I, Chapman AB, Gums JG, Johnson JA (2015) A Novel Simple Method for Determining CYP2D6 Gene Copy Number and Identifying Allele(s) with Duplication/ Multiplication. PLoS ONE 10(1): e0113808. [97] Hua Fang, Ph.D., Xiao Liu, M., Jacqueline Ramírez, M., Noura Choudhury, B.S., Michiaki Kubo, Ph.D., Hae Kyung Im, Ph.D., Anuar Konkashbaev, M.S., Nancy J. Cox, Ph.D., Mark J. Ratain, M.D., Yusuke Nakamura, M.D., Ph.D., and Peter H. O’Donnell, M.D. (2014) Establishment of CYP2D6 Reference Samples by Multiple Validated Genotyping Platforms. Pharmacogenomics J. 14(6): 564–572. [98] Chua, E. W., Cree, S. L., Ton, K. N., Lehnert, K., Shepherd, P., Helsby, N., & Kennedy, M. A. (2016). Cross-Comparison of Exome Analysis, Next-Generation Sequencing of Amplicons, and the iPLEX(®) ADME PGx Panel for Pharmacogenomic Profiling. Frontiers in pharmacology, 7, 1. [99] Pratt, V. M., Everts, R. E., Aggarwal, P., Beyer, B. N., Broeckel, U., Epstein-Baak, R., … Kalman, L. V. (2016). Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes: A GeT-RM Collaborative Project. The Journal of molecular diagnostics: JMD, 18(1), 109–123. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73822 | - |
dc.description.abstract | 細胞色素P450(CYPs)的遺傳基因變異點位對於不同藥物使用劑量、反應及療效具有高度關聯性,針對不同個體間作臨床藥物使用選擇與劑量上扮演很重要的角色。而細胞色素P450基因的基因型分布在不同種族間具有相當大的差異。而隨著次世代定序技術的發展,藥物基因檢測實現藥物治療的個人化醫療,追求更好的療效和降低副作用的風險,對患者有極大的益處。因此,如何正確推斷重要的藥物代謝基因型別與單倍體,以及探討臺灣族群的藥物代謝基因對偶基因頻率(allele frequency),對於臨床上個人化精準醫療用藥非常重要。本研究升級先前建立的藥物基因體學相關基因的次世代定序基因檢測平台 – 台大醫院藥物基因檢測平台,漸趨常見的探針捕獲方法相較於全基因組定序成本更便宜,具有更高倍率的測序覆蓋深度,更長的讀取片段。台大醫院藥物基因檢測平台更新版本2.0共有250個藥物動力學以及藥物藥效學相關基因,像是ABCB1, CACNA1S, CFTR, CYPs, DRYP, EGFR, RYR1, TPMT, UGT1A1以及VKORC1等等。以上基因清單是由FDA,CPIC,PharmGKB,PGRN,PharmVar五個重要的資料庫提供的資訊整理而成。並且建立一套針對全基因組定序或是特定基因組定序的資料結果進行藥物基因的對偶基因型鑑定分析流程,並使用可辨別基因型軟體,Aldy和Stargazer。接著,為了驗證次世代定序分析流程與軟體判讀結果,我們使用傳統實驗方法聚合酶連鎖反應(PCR),設計引子(primers)用來分辨亞洲種族中佔較高比例的相似基因型CYP2D6*10,*36以及*36+*10。我們針對77個檢體進行方法驗證,利用台大醫院藥物基因檢測平台進行特定基因定序分析以及操作傳統實驗方法聚合酶連鎖反應,其中包含8個來自國際人類基因組單體型圖計劃(The International HapMap Project)當作實驗技術和分析方法上的國際標準品;6個人類基因組測序參考材料由國家標準與技術研究所(National Institute of Standards and Technology - The Genome in a Bottle Consortium)為基因組比較和基準測試方法創建;加上30個由臺灣人體生物資料庫(Taiwan Biobank)提供的已完成全基因組定序(whole genome sequencing)的檢體;以及33個檢體來自台大醫院院內曾經對特定藥物產生副作用加入研究案的病人。同時也送36個檢體到市面上藥物基因檢測服務作比對、驗證。經由不同方法比對後結果顯示,Aldy軟體判讀結果相較於Stargazer更為準確。最後我們就利用Aldy判讀基因型軟體應用於約554筆臺灣人體生物資料庫(Taiwan Biobank)提供的全基因組定序結果進行分析。提供臺灣國人特有的臨床藥物相關基因的對偶基因頻率,期許在未來能助於學術研究以及臨床上精準醫療的參考資訊。 | zh_TW |
dc.description.abstract | Inherited genetic variations of cytochrome P450 (CYP) genes play an important role in drug dosing, responses and efficacy in each individual toward a wide variety of clinically used medications. Moreover, CYP genes show marked interethnic variability with inter-population differences in allele frequency. With the development of next-generation sequencing, pharmacogenomics testing has greatly benefited patients by enabling personalization of medication management, pursuing better efficacy and decreased risk of side effects. Thus, it is important to genotype star alleles and phase ambiguous haplotypes of CYP genes and other major pharmacogenes, and also identify the allele frequencies in Taiwanese population with implications for precision medicine. In this study, we first upgraded National Taiwan University Hospital (NTUH) pharmacogenomics (PGx) testing platform using capture-based target region enrichment followed by next-generation sequencing (NGS), a common methodology based on its low cost, deep depth of coverage, long length of reads than whole genome sequencing. Our updated NTUH PGx panel covers 250 major pharmacogenomics genes including pharmacokinetics genes and pharmacodynamics genes, such as ABCB1, CACNA1S, CFTR, various CYPs, DRYP, EGFR, RYR1, TPMT, UGT1A1 and VKORC1. The above list of genes is compiled from information provided by five important resources, FDA, CPIC, PharmGKB, PGRN, PharmVar. We also set up an NGS analysis pipeline with two genotyping toolkits, Aldy and Stargazer, for genotyping star alleles of major CYP genes from whole genome sequencing data and targeted gene sequencing data. Furthermore, we designed PCR primers for validation of NGS result to distinguish similar star allele CYP2D6*10, *36 and *36+*10, which have higher frequency in Asian. Then we applied NGS analysis pipeline and PCR assays to 78 individuals, including 8 samples from The International HapMap Project and 6 reference materials from The Genome in a Bottle Consortium as technique validations; 30 samples from Taiwan Biobank (TWB) and 33 patients with adverse drug reactions recruited from NTUH. At the same time, we sent 36 samples to commercial service, Agena Bioscience MassARRAY® System using iPLEX ADME CYP2D6 Panel, for validation. As result, we confirmed that the genotypes inferred by Aldy are more accurate than Stargazer. Next, we utilized 554 samples of TWB WGS data for calculating the allele frequency in Taiwanese. In conclusion, we revealed the distribution of allele frequencies of major CYP genes in Taiwanese and provide the information in aid of clinical therapy and academic research in future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:11:06Z (GMT). No. of bitstreams: 1 ntu-108-R06455002-1.pdf: 3459788 bytes, checksum: 78c8d643837e22ffd1811b9d613d829f (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iv Table of Contents vi List of Figures ix List of Tables x 1. Introduction 1 1.1 Pharmacogenomics 1 1.2 Cytochrome P450s 3 1.2.1 CYP2A6/2B6 3 1.2.2 CYP2C8/2C9/2C19 4 1.2.3 CYP2D6 6 1.2.4 CYP3A4/3A5 8 1.2.5 CYP4F2 8 1.3 The Research Motivations and Aims 9 2. Materials and methods 11 2.1 Study subjects 11 2.1.1 Patients recruited from National Taiwan University Hospital 11 2.1.2 Samples from The Proposed Reference Set 11 2.1.3 Samples from Taiwan Biobank 12 2.2 Upgraded version of pharmacogenomics targeted capture sequencing panel 13 2.2.1 Designed and upgraded NTUH pharmacogenomics panel 13 2.2.2 Capture-based target region enrichment followed by next-generation sequencing 16 2.3 Data analysis 16 2.3.1 Analysis pipeline of next-generation sequencing data 16 2.3.2 The normalized value of average coverage each exon regions from BAM file 18 2.3.3 Computational genotyping toolkits for calling star allele of pharmacogenes 19 2.4 Designed PCR primers on CYP2D6 for validation 21 2.4.1 Distinguishing CYP2D6*36 tandem alleles from *10 21 2.4.2 Characterization of duplicated copy 22 2.5 Agena Bioscience MassARRAY® System of iPLEX ADME CYP2D6 Panel for validation 23 3. Results 24 3.1 NTUH pharmacogenomics capture-based sequencing panel version 2.0 24 3.2 Computational genotyping toolkits for calling star allele of pharmacogenes 24 3.3 Designed PCR primers on CYP2D6 for validation 27 3.4 The normalized value of average coverage for each exon regions in CYP2D6 gene locus 28 3.5 Comparison of all methods with Agena Bioscience iPLEX ADME CYP2D6 Panel for validation 28 3.6 Comparison of the results using NTUH pharmacogenomics panel v1.0, v2.0 and WGS data inferred by Aldy 30 4. Conclusion 32 5. Discussion 34 Figures 36 Tables 49 References 57 Appendix 73 | |
dc.language.iso | en | |
dc.title | 建立次世代定序分析流程以探討臺灣族群藥物基因之對偶等位基因頻率 | zh_TW |
dc.title | Pharmacogenes in Taiwan: Establishment of Next-Generation Sequencing Analysis Pipeline and Exploration of Allele Frequency Profile | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張以承(Yi-Cheng Chang),陳倩瑜(Chien-Yu Chen) | |
dc.subject.keyword | 藥物基因體學,次世代定序,臺灣人體生物資料庫,細胞色素P450,對偶基因頻率, | zh_TW |
dc.subject.keyword | Pharmacogenomics (PGx),Next-generation sequencing (NGS),Taiwan Biobank,Cytochrome P450 (CYPs),Allele frequency, | en |
dc.relation.page | 73 | |
dc.identifier.doi | 10.6342/NTU201903871 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | zh_TW |
Appears in Collections: | 基因體暨蛋白體醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 3.38 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.